symmetric-matrix

LoadingAdd to solve later

Sponsored Links

symmetric matrices problems


LoadingAdd to solve later

Sponsored Links

More from my site

  • The Product of a Subgroup and a Normal Subgroup is a SubgroupThe Product of a Subgroup and a Normal Subgroup is a Subgroup Let $G$ be a group. Let $H$ be a subgroup of $G$ and let $N$ be a normal subgroup of $G$. The product of $H$ and $N$ is defined to be the subset \[H\cdot N=\{hn\in G\mid h \in H, n\in N\}.\] Prove that the product $H\cdot N$ is a subgroup of […]
  • Is an Eigenvector of a Matrix an Eigenvector of its Inverse?Is an Eigenvector of a Matrix an Eigenvector of its Inverse? Suppose that $A$ is an $n \times n$ matrix with eigenvalue $\lambda$ and corresponding eigenvector $\mathbf{v}$. (a) If $A$ is invertible, is $\mathbf{v}$ an eigenvector of $A^{-1}$? If so, what is the corresponding eigenvalue? If not, explain why not. (b) Is $3\mathbf{v}$ an […]
  • Every Basis of a Subspace Has the Same Number of VectorsEvery Basis of a Subspace Has the Same Number of Vectors Let $V$ be a subspace of $\R^n$. Suppose that $B=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a basis of the subspace $V$. Prove that every basis of $V$ consists of $k$ vectors in $V$.   Hint. You may use the following fact: Fact. If […]
  • Polynomial $x^4-2x-1$ is Irreducible Over the Field of Rational Numbers $\Q$Polynomial $x^4-2x-1$ is Irreducible Over the Field of Rational Numbers $\Q$ Show that the polynomial \[f(x)=x^4-2x-1\] is irreducible over the field of rational numbers $\Q$.   Proof. We use the fact that $f(x)$ is irreducible over $\Q$ if and only if $f(x+a)$ is irreducible for any $a\in \Q$. We prove that the polynomial $f(x+1)$ is […]
  • Questions About the Trace of a MatrixQuestions About the Trace of a Matrix Let $A=(a_{i j})$ and $B=(b_{i j})$ be $n\times n$ real matrices for some $n \in \N$. Then answer the following questions about the trace of a matrix. (a) Express $\tr(AB^{\trans})$ in terms of the entries of the matrices $A$ and $B$. Here $B^{\trans}$ is the transpose matrix of […]
  • Determinant/Trace and Eigenvalues of a MatrixDeterminant/Trace and Eigenvalues of a Matrix Let $A$ be an $n\times n$ matrix and let $\lambda_1, \dots, \lambda_n$ be its eigenvalues. Show that (1) $$\det(A)=\prod_{i=1}^n \lambda_i$$ (2) $$\tr(A)=\sum_{i=1}^n \lambda_i$$ Here $\det(A)$ is the determinant of the matrix $A$ and $\tr(A)$ is the trace of the matrix […]
  • Find a Formula for a Linear TransformationFind a Formula for a Linear Transformation If $L:\R^2 \to \R^3$ is a linear transformation such that \begin{align*} L\left( \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) =\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \,\,\,\, L\left( \begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) =\begin{bmatrix} 2 \\ 3 […]
  • Every Finite Group Having More than Two Elements Has a Nontrivial AutomorphismEvery Finite Group Having More than Two Elements Has a Nontrivial Automorphism Prove that every finite group having more than two elements has a nontrivial automorphism. (Michigan State University, Abstract Algebra Qualifying Exam)   Proof. Let $G$ be a finite group and $|G|> 2$. Case When $G$ is a Non-Abelian Group Let us first […]

Leave a Reply

Your email address will not be published. Required fields are marked *