MIT-exam-eye-catch

MIT-exam-eye-catch

LoadingAdd to solve later

Sponsored Links

MIT Linear Algebra Exam problems and solutions


LoadingAdd to solve later

Sponsored Links

More from my site

  • Similar Matrices Have the Same EigenvaluesSimilar Matrices Have the Same Eigenvalues Show that if $A$ and $B$ are similar matrices, then they have the same eigenvalues and their algebraic multiplicities are the same. Proof. We prove that $A$ and $B$ have the same characteristic polynomial. Then the result follows immediately since eigenvalues and algebraic […]
  • Image of a Normal Subgroup Under a Surjective Homomorphism is a Normal SubgroupImage of a Normal Subgroup Under a Surjective Homomorphism is a Normal Subgroup Let $f: H \to G$ be a surjective group homomorphism from a group $H$ to a group $G$. Let $N$ be a normal subgroup of $H$. Show that the image $f(N)$ is normal in $G$.   Proof. To show that $f(N)$ is normal, we show that $gf(N)g^{-1}=f(N)$ for any $g \in […]
  • Determine Whether There Exists a Nonsingular Matrix Satisfying $A^4=ABA^2+2A^3$Determine Whether There Exists a Nonsingular Matrix Satisfying $A^4=ABA^2+2A^3$ Determine whether there exists a nonsingular matrix $A$ if \[A^4=ABA^2+2A^3,\] where $B$ is the following matrix. \[B=\begin{bmatrix} -1 & 1 & -1 \\ 0 &-1 &0 \\ 2 & 1 & -4 \end{bmatrix}.\] If such a nonsingular matrix $A$ exists, find the inverse […]
  • Diagonalize a 2 by 2 Symmetric MatrixDiagonalize a 2 by 2 Symmetric Matrix Diagonalize the $2\times 2$ matrix $A=\begin{bmatrix} 2 & -1\\ -1& 2 \end{bmatrix}$ by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.   Solution. The characteristic polynomial $p(t)$ of the matrix $A$ […]
  • Every Prime Ideal is Maximal if $a^n=a$ for any Element $a$ in the Commutative RingEvery Prime Ideal is Maximal if $a^n=a$ for any Element $a$ in the Commutative Ring Let $R$ be a commutative ring with identity $1\neq 0$. Suppose that for each element $a\in R$, there exists an integer $n > 1$ depending on $a$. Then prove that every prime ideal is a maximal ideal.   Hint. Let $R$ be a commutative ring with $1$ and $I$ be an ideal […]
  • If Vectors are Linearly Dependent, then What Happens When We Add One More Vectors?If Vectors are Linearly Dependent, then What Happens When We Add One More Vectors? Suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ are linearly dependent $n$-dimensional real vectors. For any vector $\mathbf{v}_{r+1} \in \R^n$, determine whether the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}$ are linearly […]
  • Linear Algebra Midterm 1 at the Ohio State University (3/3)Linear Algebra Midterm 1 at the Ohio State University (3/3) The following problems are Midterm 1 problems of Linear Algebra (Math 2568) at the Ohio State University in Autumn 2017. There were 9 problems that covered Chapter 1 of our textbook (Johnson, Riess, Arnold). The time limit was 55 minutes. This post is Part 3 and contains […]
  • A Recursive Relationship for a Power of a MatrixA Recursive Relationship for a Power of a Matrix Suppose that the $2 \times 2$ matrix $A$ has eigenvalues $4$ and $-2$. For each integer $n \geq 1$, there are real numbers $b_n , c_n$ which satisfy the relation \[ A^{n} = b_n A + c_n I , \] where $I$ is the identity matrix. Find $b_n$ and $c_n$ for $2 \leq n \leq 5$, and […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.