The Sum of Cosine Squared in an Inner Product Space

Problems and solutions in Linear Algebra

Problem 551

Let $\mathbf{v}$ be a vector in an inner product space $V$ over $\R$.
Suppose that $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis of $V$.
Let $\theta_i$ be the angle between $\mathbf{v}$ and $\mathbf{u}_i$ for $i=1,\dots, n$.

Prove that
\[\cos ^2\theta_1+\cdots+\cos^2 \theta_n=1.\]

 
LoadingAdd to solve later
Sponsored Links

Definition (Angle between Vectors).

Let $\langle\mathbf{a}, \mathbf{b}\rangle$ denote the inner product of vectors $\mathbf{a}$ and $\mathbf{b}$ in $V$.

Recall that the angle $\theta$ between $\mathbf{a}$ and $\mathbf{b}$ is defined as the unique number $\theta$ between $0$ and $\pi$ satisfying
\[\cos \theta=\frac{\langle\mathbf{a}, \mathbf{b}\rangle}{\|\mathbf{a}\| \|\mathbf{b}\|}.\]

Proof.

Express the vector $\mathbf{v}$ as a linear combination of the basis vectors as
\[\mathbf{v}=a_1\mathbf{u}_1+\dots+a_n\mathbf{u}_n\] for some real numbers $a_1, \dots, a_n$.

The length of the vector $\mathbf{v}$ is given by
\[\|\mathbf{v}\|=\sqrt{a_1^2+\cdots+a_n^2}. \tag{*}\]


For each $i$, we have using the properties of the inner product
\begin{align*}
\langle \mathbf{v}, \mathbf{u}_i\rangle&=\langle a_1\mathbf{u}_1+\dots+a_n\mathbf{u}_n, \mathbf{u}_i\rangle\\
&=a_1\langle\mathbf{u}_1, \mathbf{u}_i\rangle+\cdots +a_n \langle\mathbf{u}_n, \mathbf{u}_i \rangle\\
&=a_i \tag{**}
\end{align*}
since $\langle\mathbf{u}_i, \mathbf{u}_i\rangle=1$ and $\langle\mathbf{u}_j, \mathbf{u}_i\rangle=0$ if $j\neq i$ as $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is orthonormal.


By definition of the angle, we have
\begin{align*}
\cos \theta_i&=\frac{\langle\mathbf{v}, \mathbf{u}_i\rangle}{\|\mathbf{v}\| \|\mathbf{u}_i\|}=\frac{\langle\mathbf{v}, \mathbf{u}_i\rangle}{\|\mathbf{v}\| } && \text{since $\|\mathbf{u}_i\|=1$.}
\end{align*}
It follows that
\begin{align*}
\cos ^2\theta_1+\cdots+\cos^2 \theta_n &=\frac{\langle\mathbf{v}, \mathbf{u}_1\rangle^2}{\|\mathbf{v}\|^2 }+\cdots+\frac{\langle\mathbf{v}, \mathbf{u}_n\rangle^2}{\|\mathbf{v}\|^2 }\\[6pt] &=\frac{1}{\|\mathbf{v}\|^2}(a_1^2+\cdots a_n^2) &&\text{by (**)}\\[6pt] &=\frac{1}{\|\mathbf{v}\|^2}\cdot \|\mathbf{v}\|^2 &&\text{by (*)}\\[6pt] &=1.
\end{align*}

Thus we obtain
\[\cos ^2\theta_1+\cdots+\cos^2 \theta_n=1\] as required.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Unit Vectors and Idempotent MatricesUnit Vectors and Idempotent Matrices A square matrix $A$ is called idempotent if $A^2=A$. (a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$. Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$. Prove that $P$ is an idempotent matrix. (b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be […]
  • The Inner Product on $\R^2$ induced by a Positive Definite Matrix and Gram-Schmidt OrthogonalizationThe Inner Product on $\R^2$ induced by a Positive Definite Matrix and Gram-Schmidt Orthogonalization Consider the $2\times 2$ real matrix \[A=\begin{bmatrix} 1 & 1\\ 1& 3 \end{bmatrix}.\] (a) Prove that the matrix $A$ is positive definite. (b) Since $A$ is positive definite by part (a), the formula \[\langle \mathbf{x}, […]
  • Inner Product, Norm, and Orthogonal VectorsInner Product, Norm, and Orthogonal Vectors Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in […]
  • Find the Distance Between Two Vectors if the Lengths and the Dot Product are GivenFind the Distance Between Two Vectors if the Lengths and the Dot Product are Given Let $\mathbf{a}$ and $\mathbf{b}$ be vectors in $\R^n$ such that their length are \[\|\mathbf{a}\|=\|\mathbf{b}\|=1\] and the inner product \[\mathbf{a}\cdot \mathbf{b}=\mathbf{a}^{\trans}\mathbf{b}=-\frac{1}{2}.\] Then determine the length $\|\mathbf{a}-\mathbf{b}\|$. (Note […]
  • Find the Inverse Matrix of a Matrix With FractionsFind the Inverse Matrix of a Matrix With Fractions Find the inverse matrix of the matrix \[A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.\]   Hint. You may use the augmented matrix […]
  • Orthonormal Basis of Null Space and Row SpaceOrthonormal Basis of Null Space and Row Space Let $A=\begin{bmatrix} 1 & 0 & 1 \\ 0 &1 &0 \end{bmatrix}$. (a) Find an orthonormal basis of the null space of $A$. (b) Find the rank of $A$. (c) Find an orthonormal basis of the row space of $A$. (The Ohio State University, Linear Algebra Exam […]
  • A Symmetric Positive Definite Matrix and An Inner Product on a Vector SpaceA Symmetric Positive Definite Matrix and An Inner Product on a Vector Space (a) Suppose that $A$ is an $n\times n$ real symmetric positive definite matrix. Prove that \[\langle \mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\trans}A\mathbf{y}\] defines an inner product on the vector space $\R^n$. (b) Let $A$ be an $n\times n$ real matrix. Suppose […]
  • Sum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All ZeroSum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All Zero Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if \[A_1^2+A_2^2+\cdots+A_m^2=\calO,\] where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$.   Hint. Recall that a complex matrix $A$ is Hermitian if […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Linear algebra problems and solutions
Rotation Matrix in the Plane and its Eigenvalues and Eigenvectors

Consider the $2\times 2$ matrix \[A=\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix},\] where $\theta$ is a...

Close