True or False: If $A, B$ are 2 by 2 Matrices such that $(AB)^2=O$, then $(BA)^2=O$

Linear algebra problems and solutions

Problem 537

Let $A$ and $B$ be $2\times 2$ matrices such that $(AB)^2=O$, where $O$ is the $2\times 2$ zero matrix.

Determine whether $(BA)^2$ must be $O$ as well. If so, prove it. If not, give a counter example.

 
LoadingAdd to solve later

Sponsored Links

Proof.

It is true that the matrix $(BA)^2$ must be the zero matrix as we shall prove now.

For notational convenience, let $C:=AB$.

As $C$ is a $2\times 2$ matrix, it satisfies the relation
\[C^2-\tr(C)C+\det(C)I=O \tag{*}\] by the Cayley-Hamilton theorem.
Here $I$ is the $2\times 2$ identity matrix.


We compute the determinant of $C$ as follows.
We have
\begin{align*}
\det(C)^2=\det(C^2)=\det((AB)^2)=\det(O)=0.
\end{align*}
Hence $\det(C)=0$.


Since $C^2=O$ and $\det(C)=0$, the Cayley-Hamilton relation (*) becomes
\[\tr(C)C=O.\] It follows that we have either $C=O$ or $\tr(C)=0$.
In either case, we have $\tr(C)=0$.


Note that
\begin{align*}
\det(BA)&=\det(AB)=\det(C)=0\\
\tr(BA)&=\tr(AB)=\tr(C)=0.
\end{align*}

Applying the Cayley-Hamilton theorem to the matrix $BA$, we obtain
\begin{align*}
O=(BA)^2-\tr(BA)\cdot BA+\det(BA)I=(BA)^2.
\end{align*}
Thus, we obtain $(BA)^2=O$ as claimed.


LoadingAdd to solve later

Sponsored Links

More from my site

  • If 2 by 2 Matrices Satisfy $A=AB-BA$, then $A^2$ is Zero MatrixIf 2 by 2 Matrices Satisfy $A=AB-BA$, then $A^2$ is Zero Matrix Let $A, B$ be complex $2\times 2$ matrices satisfying the relation \[A=AB-BA.\] Prove that $A^2=O$, where $O$ is the $2\times 2$ zero matrix.   Hint. Find the trace of $A$. Use the Cayley-Hamilton theorem Proof. We first calculate the […]
  • If Two Matrices are Similar, then their Determinants are the SameIf Two Matrices are Similar, then their Determinants are the Same Prove that if $A$ and $B$ are similar matrices, then their determinants are the same.   Proof. Suppose that $A$ and $B$ are similar. Then there exists a nonsingular matrix $S$ such that \[S^{-1}AS=B\] by definition. Then we […]
  • Determine Whether Given Matrices are SimilarDetermine Whether Given Matrices are Similar (a) Is the matrix $A=\begin{bmatrix} 1 & 2\\ 0& 3 \end{bmatrix}$ similar to the matrix $B=\begin{bmatrix} 3 & 0\\ 1& 2 \end{bmatrix}$?   (b) Is the matrix $A=\begin{bmatrix} 0 & 1\\ 5& 3 \end{bmatrix}$ similar to the matrix […]
  • Trace, Determinant, and Eigenvalue (Harvard University Exam Problem)Trace, Determinant, and Eigenvalue (Harvard University Exam Problem) (a) A $2 \times 2$ matrix $A$ satisfies $\tr(A^2)=5$ and $\tr(A)=3$. Find $\det(A)$. (b) A $2 \times 2$ matrix has two parallel columns and $\tr(A)=5$. Find $\tr(A^2)$. (c) A $2\times 2$ matrix $A$ has $\det(A)=5$ and positive integer eigenvalues. What is the trace of […]
  • The Formula for the Inverse Matrix of $I+A$ for a $2\times 2$ Singular Matrix $A$The Formula for the Inverse Matrix of $I+A$ for a $2\times 2$ Singular Matrix $A$ Let $A$ be a singular $2\times 2$ matrix such that $\tr(A)\neq -1$ and let $I$ be the $2\times 2$ identity matrix. Then prove that the inverse matrix of the matrix $I+A$ is given by the following formula: \[(I+A)^{-1}=I-\frac{1}{1+\tr(A)}A.\] Using the formula, calculate […]
  • An Example of a Matrix that Cannot Be a CommutatorAn Example of a Matrix that Cannot Be a Commutator Let $I$ be the $2\times 2$ identity matrix. Then prove that $-I$ cannot be a commutator $[A, B]:=ABA^{-1}B^{-1}$ for any $2\times 2$ matrices $A$ and $B$ with determinant $1$.   Proof. Assume that $[A, B]=-I$. Then $ABA^{-1}B^{-1}=-I$ implies \[ABA^{-1}=-B. […]
  • Matrix $XY-YX$ Never Be the Identity MatrixMatrix $XY-YX$ Never Be the Identity Matrix Let $I$ be the $n\times n$ identity matrix, where $n$ is a positive integer. Prove that there are no $n\times n$ matrices $X$ and $Y$ such that \[XY-YX=I.\]   Hint. Suppose that such matrices exist and consider the trace of the matrix $XY-YX$. Recall that the trace of […]
  • Does the Trace Commute with Matrix Multiplication? Is $\tr (A B) = \tr (A) \tr (B) $?Does the Trace Commute with Matrix Multiplication? Is $\tr (A B) = \tr (A) \tr (B) $? Let $A$ and $B$ be $n \times n$ matrices. Is it always true that $\tr (A B) = \tr (A) \tr (B) $? If it is true, prove it. If not, give a counterexample.   Solution. There are many counterexamples. For one, take \[A = \begin{bmatrix} 1 & 0 \\ 0 & 0 […]

You may also like...

1 Response

  1. Kuldeep Sarma says:

    This problem can also be done in this way. Let C=AB and D=BA. Then both C,D are 2 by 2 matrices and according to given condition C^2=0. Hence C is a nilpotent matrix. So all eigenvalues of C=AB are 0 and we know for square matrices,AB and BA have same set of eigenvalues, So all eigenvalues of BA are zero. Suppose p(t) be the characteristic polynomial of D=BA. Then we have p(t)=t^2. And by cayley hamilton theorem, we have p(D)=0 or D^2=0 or (BA)^2=0.

Click here to cancel reply.

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Diagonalization Problems and Solutions in Linear Algebra
Diagonalize the Complex Symmetric 3 by 3 Matrix with $\sin x$ and $\cos x$

Consider the complex matrix \[A=\begin{bmatrix} \sqrt{2}\cos x & i \sin x & 0 \\ i \sin x &0 &-i \sin...

Close