Two Normal Subgroups Intersecting Trivially Commute Each Other

Group Theory Problems and Solutions in Mathematics

Problem 196

Let $G$ be a group. Assume that $H$ and $K$ are both normal subgroups of $G$ and $H \cap K=1$. Then for any elements $h \in H$ and $k\in K$, show that $hk=kh$.
 
LoadingAdd to solve later
Sponsored Links

Proof.

It suffices to show that $h^{-1}k^{-1}hk \in H \cap K$.
In fact, if this it true then we have $h^{-1}k^{-1}hk=1$, and thus $hk=kh$.

Since $h\in H$ and $H$ is a normal subgroup of $G$, we see that the conjugate $k^{-1}hk\in H$.
Thus we have
\[h^{-1}k^{-1}hk =h^{-1}(k^{-1}hk)\in H. \tag{*}\]

Also, since $k^{-1}\in K$ and $K$ is a normal subgroup of $G$, we have the conjugate $h^{-1}k^{-1}h\in K$.
Hence, we see that
\[h^{-1}k^{-1}hk =(h^{-1}k^{-1}h)k\in K. \tag{**}\]

From (*) and (**), we see that the element $h^{-1}k^{-1}hk$ is in both $H$ and $K$, hence in $H\cap K$ as claimed.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Abelian Normal Subgroup, Intersection, and Product of GroupsAbelian Normal Subgroup, Intersection, and Product of Groups Let $G$ be a group and let $A$ be an abelian subgroup of $G$ with $A \triangleleft G$. (That is, $A$ is a normal subgroup of $G$.) If $B$ is any subgroup of $G$, then show that \[A \cap B \triangleleft AB.\]   Proof. First of all, since $A \triangleleft G$, the […]
  • If a Sylow Subgroup is Normal in a Normal Subgroup, it is a Normal SubgroupIf a Sylow Subgroup is Normal in a Normal Subgroup, it is a Normal Subgroup Let $G$ be a finite group. Suppose that $p$ is a prime number that divides the order of $G$. Let $N$ be a normal subgroup of $G$ and let $P$ be a $p$-Sylow subgroup of $G$. Show that if $P$ is normal in $N$, then $P$ is a normal subgroup of $G$.   Hint. It follows from […]
  • Two Quotients Groups are Abelian then Intersection Quotient is AbelianTwo Quotients Groups are Abelian then Intersection Quotient is Abelian Let $K, N$ be normal subgroups of a group $G$. Suppose that the quotient groups $G/K$ and $G/N$ are both abelian groups. Then show that the group \[G/(K \cap N)\] is also an abelian group.     Hint. We use the following fact to prove the problem. Lemma: For a […]
  • Conjugate of the Centralizer of a Set is the Centralizer of the Conjugate of the SetConjugate of the Centralizer of a Set is the Centralizer of the Conjugate of the Set Let $X$ be a subset of a group $G$. Let $C_G(X)$ be the centralizer subgroup of $X$ in $G$. For any $g \in G$, show that $gC_G(X)g^{-1}=C_G(gXg^{-1})$.   Proof. $(\subset)$ We first show that $gC_G(X)g^{-1} \subset C_G(gXg^{-1})$. Take any $h\in C_G(X)$. Then for […]
  • Group Generated by Commutators of Two Normal Subgroups is a Normal SubgroupGroup Generated by Commutators of Two Normal Subgroups is a Normal Subgroup Let $G$ be a group and $H$ and $K$ be subgroups of $G$. For $h \in H$, and $k \in K$, we define the commutator $[h, k]:=hkh^{-1}k^{-1}$. Let $[H,K]$ be a subgroup of $G$ generated by all such commutators. Show that if $H$ and $K$ are normal subgroups of $G$, then the subgroup […]
  • Commutator Subgroup and Abelian Quotient GroupCommutator Subgroup and Abelian Quotient Group Let $G$ be a group and let $D(G)=[G,G]$ be the commutator subgroup of $G$. Let $N$ be a subgroup of $G$. Prove that the subgroup $N$ is normal in $G$ and $G/N$ is an abelian group if and only if $N \supset D(G)$.   Definitions. Recall that for any $a, b \in G$, the […]
  • Any Subgroup of Index 2 in a Finite Group is NormalAny Subgroup of Index 2 in a Finite Group is Normal Show that any subgroup of index $2$ in a group is a normal subgroup. Hint. Left (right) cosets partition the group into disjoint sets. Consider both left and right cosets. Proof. Let $H$ be a subgroup of index $2$ in a group $G$. Let $e \in G$ be the identity […]
  • The Preimage of a Normal Subgroup Under a Group Homomorphism is NormalThe Preimage of a Normal Subgroup Under a Group Homomorphism is Normal Let $G$ and $G'$ be groups and let $f:G \to G'$ be a group homomorphism. If $H'$ is a normal subgroup of the group $G'$, then show that $H=f^{-1}(H')$ is a normal subgroup of the group $G$.   Proof. We prove that $H$ is normal in $G$. (The fact that $H$ is a subgroup […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Abelian Normal Subgroup, Intersection, and Product of Groups

Let $G$ be a group and let $A$ be an abelian subgroup of $G$ with $A \triangleleft G$. (That is,...

Close