Union of Subspaces is a Subspace if and only if One is Included in Another

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 427

Let $W_1, W_2$ be subspaces of a vector space $V$. Then prove that $W_1 \cup W_2$ is a subspace of $V$ if and only if $W_1 \subset W_2$ or $W_2 \subset W_1$.

 
FavoriteLoadingAdd to solve later

Sponsored Links
 

Proof.

If $W_1 \cup W_2$ is a subspace, then $W_1 \subset W_2$ or $W_2 \subset W_1$.

$(\implies)$ Suppose that the union $W_1\cup W_2$ is a subspace of $V$.
Seeking a contradiction, assume that $W_1 \not \subset W_2$ and $W_2 \not \subset W_1$.
This means that there are elements
\[x\in W_1\setminus W_2 \text{ and } y \in W_2 \setminus W_1.\]

Since $W_1 \cup W_2$ is a subspace, it is closed under addition. Thus, we have $x+y\in W_1 \cup W_2$.
It follows that we have either
\[x+y\in W_1 \text{ or } x+y\in W_2.\] Suppose that $x+y\in W_1$. Then we write \begin{align*}
y=(x+y)-x.
\end{align*}
Since both $x+y$ and $x$ are elements of the subspace $W_1$, their difference $y=(x+y)-x$ is also in $W_1$. However, this contradicts the choice of $y \in W_2 \setminus W_1$.

Similarly, when $x+y\in W_2$, then we have
\[x=(x+y)-y\in W_2,\] and this contradicts the choice of $x \in W_1 \setminus W_2$.

In either case, we have reached a contradiction.
Therefore, we have either $W_1 \subset W_2$ or $W_2 \subset W_1$.

If $W_1 \subset W_2$ or $W_2 \subset W_1$, then $W_1 \cup W_2$ is a subspace.

$(\impliedby)$ If we have $W_1 \subset W_2$, then it yields that $W_1 \cup W_2=W_2$ and it is a subspace of $V$.

Similarly, if $W_2 \subset W_1$, then we have $W_1\cup W_2=W_2$ and it is a subspace of $V$.
In either case, the union $W_1 \cup W_2$ is a subspace.


FavoriteLoadingAdd to solve later

Sponsored Links

More from my site

  • The Union of Two Subspaces is Not a Subspace in a Vector SpaceThe Union of Two Subspaces is Not a Subspace in a Vector Space Let $U$ and $V$ be subspaces of the vector space $\R^n$. If neither $U$ nor $V$ is a subset of the other, then prove that the union $U \cup V$ is not a subspace of $\R^n$.   Proof. Since $U$ is not contained in $V$, there exists a vector $\mathbf{u}\in U$ but […]
  • The Sum of Subspaces is a Subspace of a Vector SpaceThe Sum of Subspaces is a Subspace of a Vector Space Let $V$ be a vector space over a field $K$. If $W_1$ and $W_2$ are subspaces of $V$, then prove that the subset \[W_1+W_2:=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x}\in W_1, \mathbf{y}\in W_2\}\] is a subspace of the vector space $V$.   Proof. We prove the […]
  • True or False. The Intersection of Bases is a Basis of the Intersection of SubspacesTrue or False. The Intersection of Bases is a Basis of the Intersection of Subspaces Determine whether the following is true of false. If it is true, then give a proof. If it is false, then give a counterexample. Let $W_1$ and $W_2$ be subspaces of the vector space $\R^n$. If $B_1$ and $B_2$ are bases for $W_1$ and $W_2$, respectively, then $B_1\cap B_2$ is a […]
  • Two Subspaces Intersecting Trivially, and the Direct Sum of Vector Spaces.Two Subspaces Intersecting Trivially, and the Direct Sum of Vector Spaces. Let $V$ and $W$ be subspaces of $\R^n$ such that $V \cap W =\{\mathbf{0}\}$ and $\dim(V)+\dim(W)=n$. (a) If $\mathbf{v}+\mathbf{w}=\mathbf{0}$, where $\mathbf{v}\in V$ and $\mathbf{w}\in W$, then show that $\mathbf{v}=\mathbf{0}$ and $\mathbf{w}=\mathbf{0}$. (b) If $B_1$ is a […]
  • Non-Example of a Subspace in 3-dimensional Vector Space $\R^3$Non-Example of a Subspace in 3-dimensional Vector Space $\R^3$ Let $S$ be the following subset of the 3-dimensional vector space $\R^3$. \[S=\left\{ \mathbf{x}\in \R^3 \quad \middle| \quad \mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, x_1, x_2, x_3 \in \Z \right\}, \] where $\Z$ is the set of all integers. […]
  • Is a Set of All Nilpotent Matrix a Vector Space?Is a Set of All Nilpotent Matrix a Vector Space? Let $V$ denote the vector space of all real $n\times n$ matrices, where $n$ is a positive integer. Determine whether the set $U$ of all $n\times n$ nilpotent matrices is a subspace of the vector space $V$ or not.   Definition. An matrix $A$ is a nilpotent matrix if […]
  • Vector Space of Polynomials and Coordinate VectorsVector Space of Polynomials and Coordinate Vectors Let $P_2$ be the vector space of all polynomials of degree two or less. Consider the subset in $P_2$ \[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\] where \begin{align*} &p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\ &p_3(x)=2x^2, &p_4(x)=2x^2+x+1. \end{align*} (a) Use the basis $B=\{1, […]
  • Subspaces of the Vector Space of All Real Valued Function on the IntervalSubspaces of the Vector Space of All Real Valued Function on the Interval Let $V$ be the vector space over $\R$ of all real valued functions defined on the interval $[0,1]$. Determine whether the following subsets of $V$ are subspaces or not. (a) $S=\{f(x) \in V \mid f(0)=f(1)\}$. (b) $T=\{f(x) \in V \mid […]

You may also like...

1 Response

  1. 06/14/2017

    […] For a proof, see the post “Union of Subspaces is a Subspace if and only if One is Included in Another“. […]

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Idempotent Matrix Problems and Solutions in Linear Algebra
If $A$ is an Idempotent Matrix, then When $I-kA$ is an Idempotent Matrix?

A square matrix $A$ is called idempotent if $A^2=A$. (a) Suppose $A$ is an $n \times n$ idempotent matrix and...

Close