Use the Cayley-Hamilton Theorem to Compute the Power $A^{100}$

Kyushu University Linear Algebra Exam Problems and Solutions

Problem 471

Let $A$ be a $3\times 3$ real orthogonal matrix with $\det(A)=1$.

(a) If $\frac{-1+\sqrt{3}i}{2}$ is one of the eigenvalues of $A$, then find the all the eigenvalues of $A$.

(b) Let
\[A^{100}=aA^2+bA+cI,\] where $I$ is the $3\times 3$ identity matrix.
Using the Cayley-Hamilton theorem, determine $a, b, c$.

(Kyushu University, Linear Algebra Exam Problem)
 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) Find the all the eigenvalues of $A$.

Since $A$ is a real matrix and $\frac{-1+\sqrt{3}i}{2}$ is a complex eigenvalue, its conjugate $\frac{-1-\sqrt{3}i}{2}$ is also an eigenvalue of $A$.
As $A$ is a $3\times 3$ matrix, it has one more eigenvalue $\lambda$.

Note that the product of all eigenvalues of $A$ is the determinant of $A$.
Thus, we have
\[\frac{-1+\sqrt{3}i}{2} \cdot \frac{-1-\sqrt{3}i}{2}\cdot \lambda =\det(A)=1.\] Solving this, we obtain $\lambda=1$.
Therefore, the eigenvalues of $A$ are
\[\frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}, 1.\]

(a) Using the Cayley-Hamilton theorem, determine $a, b, c$.

To use the Cayley-Hamilton theorem, we first need to determine the characteristic polynomial $p(t)=\det(A-tI)$ of $A$.
Since we found all the eigenvalues of $A$ in part (a) and the roots of characteristic polynomials are the eigenvalues, we know that
\begin{align*}
p(t)&=-\left(\, t-\frac{-1+\sqrt{3}i}{2} \,\right)\left(\, t-\frac{-1-\sqrt{3}i}{2} \,\right)(t-1) \tag{*}\\
&=-(t^2+t+1)(t-1)\\
&=-t^3+1.
\end{align*}
(Remark that if your definition of the characteristic polynomial is $\det(tI-A)$, then the first negative sign in (*) should be omitted.)

Then the Cayley-Hamilton theorem yields that
\[P(A)=-A^3+I=O,\] where $O$ is the $3\times 3$ zero matrix.

Hence we have $A^3=I$.
We compute
\begin{align*}
A^{100}=(A^3)^{33}A=I^{33}A=IA=A.
\end{align*}

Thus, we conclude that $a=0, b=1, c=0$.

Comment.

Observe that we did not use the assumption that $A$ is orthogonal.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Find the Eigenvalues and Eigenvectors of the Matrix $A^4-3A^3+3A^2-2A+8E$.Find the Eigenvalues and Eigenvectors of the Matrix $A^4-3A^3+3A^2-2A+8E$. Let \[A=\begin{bmatrix} 1 & -1\\ 2& 3 \end{bmatrix}.\] Find the eigenvalues and the eigenvectors of the matrix \[B=A^4-3A^3+3A^2-2A+8E.\] (Nagoya University Linear Algebra Exam Problem)   Hint. Apply the Cayley-Hamilton theorem. That is if $p_A(t)$ is the […]
  • A Square Root Matrix of a Symmetric MatrixA Square Root Matrix of a Symmetric Matrix Answer the following two questions with justification. (a) Does there exist a $2 \times 2$ matrix $A$ with $A^3=O$ but $A^2 \neq O$? Here $O$ denotes the $2 \times 2$ zero matrix. (b) Does there exist a $3 \times 3$ real matrix $B$ such that $B^2=A$ […]
  • Find All the Eigenvalues of 4 by 4 MatrixFind All the Eigenvalues of 4 by 4 Matrix Find all the eigenvalues of the matrix \[A=\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 &0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}.\] (The Ohio State University, Linear Algebra Final Exam Problem)   Solution. We compute the […]
  • Diagonalize a 2 by 2 Matrix $A$ and Calculate the Power $A^{100}$Diagonalize a 2 by 2 Matrix $A$ and Calculate the Power $A^{100}$ Let \[A=\begin{bmatrix} 1 & 2\\ 4& 3 \end{bmatrix}.\] (a) Find eigenvalues of the matrix $A$. (b) Find eigenvectors for each eigenvalue of $A$. (c) Diagonalize the matrix $A$. That is, find an invertible matrix $S$ and a diagonal matrix $D$ such that […]
  • How to Calculate and Simplify a Matrix PolynomialHow to Calculate and Simplify a Matrix Polynomial Let $T=\begin{bmatrix} 1 & 0 & 2 \\ 0 &1 &1 \\ 0 & 0 & 2 \end{bmatrix}$. Calculate and simplify the expression \[-T^3+4T^2+5T-2I,\] where $I$ is the $3\times 3$ identity matrix. (The Ohio State University Linear Algebra Exam) Hint. Use the […]
  • Find Eigenvalues, Eigenvectors, and Diagonalize the 2 by 2 MatrixFind Eigenvalues, Eigenvectors, and Diagonalize the 2 by 2 Matrix Consider the matrix $A=\begin{bmatrix} a & -b\\ b& a \end{bmatrix}$, where $a$ and $b$ are real numbers and $b\neq 0$. (a) Find all eigenvalues of $A$. (b) For each eigenvalue of $A$, determine the eigenspace $E_{\lambda}$. (c) Diagonalize the matrix $A$ by finding a […]
  • A Diagonalizable Matrix which is Not Diagonalized by a Real Nonsingular MatrixA Diagonalizable Matrix which is Not Diagonalized by a Real Nonsingular Matrix Prove that the matrix \[A=\begin{bmatrix} 0 & 1\\ -1& 0 \end{bmatrix}\] is diagonalizable. Prove, however, that $A$ cannot be diagonalized by a real nonsingular matrix. That is, there is no real nonsingular matrix $S$ such that $S^{-1}AS$ is a diagonal […]
  • Rotation Matrix in Space and its Determinant and EigenvaluesRotation Matrix in Space and its Determinant and Eigenvalues For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by \[A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.\] (a) Find the determinant of the matrix $A$. (b) Show that $A$ is an […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
If $A$ is a Skew-Symmetric Matrix, then $I+A$ is Nonsingular and $(I-A)(I+A)^{-1}$ is Orthogonal

Let $A$ be an $n\times n$ real skew-symmetric matrix. (a) Prove that the matrices $I-A$ and $I+A$ are nonsingular. (b)...

Close