Classification of Pre-modular Categories

Eric Rowell Texas A&M

The Ohio State U., December 2016 Supported by USA NSF grant DMS1410144 joint work with Ng, Bruillard, Wang, Galindo, Plavnik... in 10+ papers

A pre-modular category C (over \mathbb{C}) is monoidal: (\otimes , 1), semisimple: $X \cong \bigoplus_i m_i X_i$, linear: Hom(X, Y) $\in Vec_{\mathbb{C}}$, rigid: $X^* \otimes X \mapsto 1 \mapsto X \otimes X^*$, finite rank: Irr(C) = {1 = X_0, \ldots, X_{r-1} }, spherical: theta_X : $X \cong X$, dim(X) $\in \mathbb{R}$, braided: $c_{X,Y}$: $X \otimes Y \cong Y \otimes X$,

- Plus lots of compatibility...
- C is modular if $S_{ij} := \operatorname{Tr}_{C}(c_{X_{i},X_{i}^{*}}c_{X_{i}^{*},X_{i}})$ is invertible.
- C is symmetric if $c_{X,Y}c_{Y,X} = Id_{Y\otimes X}$ for all X, Y.
- dimensions: $d_i := S_{0i}, \dim(\mathcal{C}) = \sum_i d_i^2$
- ▶ fusion (multiplicity) rules: $N_{ij}^k := \dim \operatorname{Hom}(X_i \otimes X_j, X_k)$

A Modular Category

Example SU(2)_{$\ell-2$} from Rep($U_q \mathfrak{sl}_2$) at $q = e^{\pi i/\ell}$ \blacktriangleright simple objects { $X_0 = \mathbf{1}, X_1, \dots, X_{\ell-2}$ } $\blacktriangleright S_{ij} = \frac{\sin(\frac{(i+1)(j+1)\pi}{\ell})}{\sin(\frac{\pi}{\ell})}$ and $d_i = [i+1]_q := \frac{q^{i+1}-q^{-i-1}}{q-q^{-1}}$ $\vdash \theta_j = e^{\frac{\pi i(j^2+2j)}{2\ell}}$ $\blacktriangleright X_1 \otimes X_k \cong X_{k-1} \oplus X_{k+1}$ for $1 \le k \le \ell - 3$

Definition

Let C be a braided monoidal category. $X \in C$ is **transparent** if $c_{X,Y}c_{Y,X} = Id_{Y\otimes X}$ for all $Y \in C$. The transparent objects form a full (symmetric) subcategory called the **Müger center**, denoted C'.

Definition

More generally, for $\mathcal{D} \subset \mathcal{C}$ pre-modular the **relative (Müger)** center $Z_{\mathcal{C}}(\mathcal{D}) := \{Y \in \mathcal{C} : c_{X,Y}c_{Y,X} = Id_{Y \otimes X}, X \in \mathcal{D}\}$

Theorem (Müger)

C pre-modular: X, Y simple $c_{X,Y}c_{Y,X} = Id_{Y\otimes X}$ iff $S_{X,Y} = d_X d_Y$.

Theorem (Bruguieres)

 \mathcal{C} pre-modular is modular iff $\mathcal{C}' \cong Vec = \langle \mathbf{1} \rangle$.

Theorem (Deligne)

Symmetric pre-modular categories are equivalent to Rep(G, z): super-representations of G, where $z \in Z(G)$, $z^2 = 1$ determines braiding.

Example

The *unitary* pre-modular category $sVec \cong \text{Rep}(\mathbb{Z}_2, -1)$ is symmetric. Two simples: $\mathbf{1}, f$ with $c_{f,f} = -Id_{f \otimes f}$ and $\theta_f = -1$.

Definition (KEY)

Unitary pre-modular C is **super-modular** if $C' \cong sVec$. Generally, if $X \in C$ simple has $\langle X \rangle \cong sVec$, X is a **fermion**, while if $\langle X \rangle \cong \text{Rep}(\mathbb{Z}_2)$, X is a **boson**.

Example

 $PSU(2)_{4m+2}$: "integer half" of $SU(2)_{4m+2}$ is super-modular

- simple objects { Y₀ = 1, Y₁ = X₂,..., Y_{2m+1} = X_{4m+2}}
 S_{ij} = \$\frac{\sin(\frac{(2i+1)(2j+1)\pi}{(4m+4)})}{\sin(\frac{\pi}{(4m+4)})}\$ and \$\theta_j\$ = \$e^{\frac{\pi i (j^2+j)}{2m+2}}\$
 Y₁ \otimes Y_k \otimes Y_{k-1} \otimes Y_{k+1} \otimes Y_k for \$k < ∞\$
 Notice: \$Y_{2m+1}^{\otimes 2}\$ = 1, \$\theta_{2m+1}\$ = -1 and \$S_{j,2m+1}\$ = \$d_j d_{2m+1}\$ \overline{\pi j}\$
- In fact: $\mathsf{PSU}(2)'_{4m+2} = \langle Y_{2m+1} \rangle \cong sVec.$

Top 10 Reasons to Like Modular Categories

Let C be a modular category of rank r, with N_{ii}^k the fusion coefficients. Define $d_i := S_{0i}$, $T_{ii} := \delta_{ii}\theta_i$, $D^2 := \sum_i d_i^2$ 1-3 $S = S^t$, $SS^{\dagger} = D^2 Id$, $ord(T) = N < \infty$ 4 S, T give proj. rep. of SL(2, \mathbb{Z}), factors over SL(2, $\mathbb{Z}/N\mathbb{Z}$) 5 $N_{ii}^k = \sum_a \frac{S_{ia}S_{ja}\overline{S_{ka}}}{D^2 d}$ 6 $\theta_i \theta_i S_{ij} = \sum_{a} N_{i^*i}^k d_k \theta_k$. 7 $\nu_n(k) := \frac{1}{D^2} \sum_{i,j} N_{ij}^k d_i d_j \left(\frac{\theta_i}{\theta_i}\right)^n \in \mathbb{Z}[\zeta_N] \text{ and } \nu_2(k) \in \{0, \pm 1\}$ 8 $\mathbb{Q}(S) \subset \mathbb{Q}(T)$, Aut_{$\mathbb{Q}} <math>\mathbb{Q}(S) \subset \mathfrak{S}_r$, Aut_{$\mathbb{Q}(S)} <math>\mathbb{Q}(T) \cong (\mathbb{Z}_2)^k$.</sub></sub> 9 Prime (ideal) divisors of $\langle D^2 \rangle$ and $\langle N \rangle$ coincide in $\mathbb{Z}[\zeta_N]$. 10 There are finitely many modular categories (of fixed rank r). Most of these are false (or nonsense) for pre-modular categories.

De-equivariantization

Given a Tannakian subcategory $\operatorname{Rep}(G) \cong \mathcal{D} \subset \mathcal{C}$ of a fusion category \mathcal{C} one may construct the de-equivariantization \mathcal{C}_G of Fun(G)-modules, where $Fun(G) \in \operatorname{Rep}(G)$ is the **regular algebra** and G is a finite group.

- C_G is G-graded.
- dim $C_G = \dim(C)/|G|$
- If C is braided and $\mathcal{D} \subset C'$ then \mathcal{C}_{G} is braided.

Lemma

Let C be a pre-modular category, and $\operatorname{Rep}(G) \cong T \subset C'$ be the maximal, Tannakian, central subcategory. Then C_G is either modular (if T = C') or super-modular.

Remark

The process can be reversed via **equivariantization**: $\mathcal{D} \to \mathcal{D}^{G}$. We therefore reduce the classification of pre-modular categories to modular/super-modular.

- ▶ Pointed: C(A, q), A finite abelian group, q non-degenerate quad. form on A.
- Quantum groups: "purifications" of Rep(U_qg) at q = e^{πi/ℓ} with some restrictions on ℓ.
- Group-theoretical: $\operatorname{Rep}(D^{\omega}G)$ finite group G, 3-cocycle ω . $\mathcal{D} \subset \operatorname{Rep}(D^{\omega}G)$.
- Drinfeld center: Z(D) for spherical fusion category D (say, from a subfactor....)
- Deligne products: $C \cong D_1 \boxtimes D_2$. If not of this form, **prime**.

A Sampler of Classifications of Modular Categories

Definition

 \mathcal{C} is weakly integral if dim $(\mathcal{C}) \in \mathbb{N}$, and integral if dim $(X) \in \mathbb{N}$

The following modular categories are classified:

- ► Rank≤ 5
- ▶ Weakly Integral, Rank≤ 7
- dim(C) odd, Rank ≤ 11

Let p, q, r be primes and m a square-free integer.

- dim $(\mathcal{C}) = p^2 m$ or $p^3 m$, gcd(m, p) = 1 (Weakly Integral).
- Integral: dim(C) = mpⁿ, (p, m) = 1, n ≤ 5, dim(C) ∈ {pq², pqr, pⁿ} pqⁿ, p < q</p>

Conjecture

Every odd-dimensional modular category is group-theoretical.

Classifications are due to many different authors...

Remark

Some classifications are more explicit than others:

- Up to equivalence
- A possibly redundant list
- A list of possible pairs (S, T)
- Fusion rules
- An acceptable characterization (e.g. "all are group-theoretical")

A Worked Example

To classify modular categories of dimension p^3m where p is prime, m is square-free and gcd(m, p) = 1.

- If C is pointed, $C \cong C(A, q)$ victory!
- Suppose C is not pointed. Then p = 2.
- ► If C is not prime, then C has a pointed Deligne factor (can be dealt with by induction etc.)
- If C is prime, then C has the same fusion rules as SO(2p)₂, and simple objects have dimension 1, 2 or √p.
- Let D be any modular category with fusion rules like SO(2N)₂, N odd (D is even metaplectic). Then D has a boson ⟨b⟩ ≅ Rep(Z₂).
- ▶ De-equivariantize: (D_{Z₂})₀ ≅ C(Z_{2N}, q) is modular. Z₂-Extensions/equivariantizations known. victory!

- **split super-modular**: $C \boxtimes sVec$, C modular.
- Let C be modular, with f ∈ C a fermion. Z_C(⟨f⟩) ⊂ C is super-modular and has dim Z_C(⟨f⟩) = dim C/2

Conjecturally, these are all of them:

Conjecture (Davydov-Nikshych-Ostrik)

Every super-modular category \mathcal{D} has $\mathcal{D} \subset \mathcal{C}$ where \mathcal{C} is modular and dim $\mathcal{C} = 2 \dim \mathcal{D}$.

This is a special case of a (false) conjecture of Müger, who calls such C a **minimal modular extension**.

Example (Kitaev)

There are exactly 16 modular $C \supset sVec$ with dim $C = 4 = 2 \dim sVec$: $SO(N)_1$ for $1 \le N \le 16$.

Remark

N = 1 is Ising, N = 2 is $\mathcal{C}(\mathbb{Z}_4, q)$ N = 16 is Toric Code,...

This is a general phenomena (Tian-Kong-Wen, generalizing our result):

Theorem

If super-modular \mathcal{D} has one minimal modular extension, it has exactly 16.

Why are super-modular categories nice?

They are even rank:
$$-\otimes f$$
 is fixed-point-free.
 $\nu_2(k) := \frac{1}{D^2} \sum_{i,j} N_{ij}^k d_i d_j \left(\frac{\theta_i}{\theta_j}\right)^2 \in \{0, \pm 1\}.$
 $S = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \otimes \hat{S}, \ T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \hat{T} \text{ (not unique)}$
 $\hat{G} = \hat{T}^2$

- ► S, T^2 give proj. rep of $\Gamma_0(2) \subset SL(2,\mathbb{Z})$.
- A version of Verlinde formula using \hat{S} holds.
- A classification of rank \leq 6 is known.

The following are modular categories with a fermion:

- ▶ $SU(4k+2)_{4m+2}$
- $SO(2k+1)_{2m+1}$
- $Sp(2r)_m$ with $rm = 2 \pmod{4}$,
- $SO(2r)_m$ with $r = 2 \pmod{4}$ and $m = 2 \pmod{4}$,
- $(E_7)_{4m+2}$.

Why Can't we de-equivariantize C by $sVec = \langle f \rangle$?

Answer

We can, but the result $Q = C_{sVec}$ is super-fusion: Hom_Q(X, Y) \in sVec. We call them fermionic quotients The idea: Hom_Q(X, Y) := (Hom(X, Y), Hom(X, f \otimes Y)). Example ((PSU(2)₆)_{sVec})

1.
$$PSU(2)_6$$
 Simple objects: $[\mathbf{1}, Y_1, Y_2, Y_3 = f]$
2. $f \otimes Y_1 = Y_2, f \otimes f = \mathbf{1}$, so $Y_1 \leftrightarrow Y_2$ and $\mathbf{1} \leftrightarrow f$
3. $\hat{S} = \begin{pmatrix} 1 & 1 + \sqrt{2} \\ 1 + \sqrt{2} & -1 \end{pmatrix}, \hat{T} = Diag(1, i)$
4. $N_1 = \begin{pmatrix} (0,0) & (1,0) \\ (1,0) & (1,1) \end{pmatrix}$ where
 $(a,b)(c,d) = (ac + bd, bc + ad).$

Conjecture

- (a) For any fermionic quotient, \hat{S} and \hat{T}^2 generate a finite group, (but \hat{S} , \hat{T} do not).
- (b) Q is pure-braided, and image of \mathcal{P}_n is finite iff $\dim(Q)^2 \in \mathbb{Z}$.
- (c) There are finitely many fermionic quotients of a given rank k, (and therefore finitely many pre-modular categories of rank r).

Thank you!