The Tail of the Colored Jones Polynomial

Cody Armond
The Ohio State University - Mansfield

September 1, 2016

Table of contents

(9) Introduction

- Colored Jones Polynomial
- Adequate Links
- The Head and Tail
(2) Properties of the Head and Tail
- Existence
- Properties
- Leading Coefficients

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N, L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link L, where N is a positive integer bigger than or equal to 2.

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N, L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link L, where N is a positive integer bigger than or equal to 2.

- $J_{N, L}(q)$ is the quantum invariant link invariant associated with the N-dimensional irreducible representation of $U_{q}\left(\mathfrak{s l}_{2}\right)$

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N, L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link L, where N is a positive integer bigger than or equal to 2 .

- $J_{N, L}(q)$ is the quantum invariant link invariant associated with the N-dimensional irreducible representation of $U_{q}\left(\mathfrak{s l}_{2}\right)$
- $J_{N, L}(q) \in \mathbb{Z}\left[q, q^{-1}\right]$ if $|L|$ is odd.

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N, L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link L, where N is a positive integer bigger than or equal to 2.

- $J_{N, L}(q)$ is the quantum invariant link invariant associated with the N-dimensional irreducible representation of $U_{q}\left(\mathfrak{s l}_{2}\right)$
- $J_{N, L}(q) \in \mathbb{Z}\left[q, q^{-1}\right]$ if $|L|$ is odd.
- $q^{1 / 2} J_{N, L}(q) \in \mathbb{Z}\left[q, q^{-1}\right]$ if $|L|$ is even.

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N, L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link L, where N is a positive integer bigger than or equal to 2.

- $J_{N, L}(q)$ is the quantum invariant link invariant associated with the N-dimensional irreducible representation of $U_{q}\left(\mathfrak{s l}_{2}\right)$
- $J_{N, L}(q) \in \mathbb{Z}\left[q, q^{-1}\right]$ if $|L|$ is odd.
- $q^{1 / 2} J_{N, L}(q) \in \mathbb{Z}\left[q, q^{-1}\right]$ if $|L|$ is even.
- $J_{2, K}(q)$ is the ordinary Jones polynomial for a knot K.

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N, L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link L, where N is a positive integer bigger than or equal to 2.

- $J_{N, L}(q)$ is the quantum invariant link invariant associated with the N-dimensional irreducible representation of $U_{q}\left(\mathfrak{s l}_{2}\right)$
- $J_{N, L}(q) \in \mathbb{Z}\left[q, q^{-1}\right]$ if $|L|$ is odd.
- $q^{1 / 2} J_{N, L}(q) \in \mathbb{Z}\left[q, q^{-1}\right]$ if $|L|$ is even.
- $J_{2, K}(q)$ is the ordinary Jones polynomial for a knot K.
- If K is the unknot $J_{N, K}(q)=1$.

Kauffman Bracket Relations

Figure: A and B smoothings

Kauffman Bracket Relations

Figure: A and B smoothings
$1=A)+A^{-1}$

Kauffman Bracket Relations

Figure: A and B smoothings

$$
\begin{aligned}
& 1 /=A+A^{-1} \\
& =-A^{2}-A^{-2}
\end{aligned}
$$

Kauffman Bracket Relations

Figure: A and B smoothings

$$
\begin{aligned}
& 1 /=A)\left(+A^{-1}\right. \\
& =-A^{2}-A^{-2}
\end{aligned}
$$

Definition (Kauffman Bracket Skein Module)

For a 3-manifold M, a ring R (usually $\mathbb{Z}\left[A, A^{-1}\right]$ or $\mathbb{Q}(A)$), and an invertible element A of R :
$S(M ; R, A):=R\{$ framed links in $M\} /(I, I I)$

Jones Wenzl Idempotent

$$
\Delta_{n}:=(-1)^{n} \frac{A^{2(n+1)}-A^{-2(n+1)}}{A^{2}-A^{-2}}
$$

Jones Wenzl Idempotent

$$
\Delta_{n}:=(-1)^{n} \frac{A^{2(n+1)}-A^{-2(n+1)}}{A^{2}-A^{-2}}
$$

$$
\square=\Delta_{n}
$$

Jones Wenzl Idempotent

$$
\Delta_{n}:=(-1)^{n} \frac{A^{2(n+1)}-A^{-2(n+1)}}{A^{2}-A^{-2}}
$$

$$
\square=\Delta_{n}
$$

The Colored Jones Polynomial

If $L=(\quad$, then define

$$
\tilde{J}_{n, L}(A)=
$$

The Colored Jones Polynomial

If $L=($, then define

$$
\tilde{J}_{n, L}(A)=
$$

$$
J_{n+1, L}(q):=\left.\frac{\tilde{J}_{n, L}(A)}{\Delta_{n}}\right|_{A=q^{-1 / 4}}
$$

For L an unframed link, give it the 0 -framing. Changing framing changes the values of $\tilde{J}_{n, L}(A)$ by multiplying by $\pm A$ to some power.

Figure: A and B smoothings

Figure: A and B smoothings

Figure: The All-B state graph G_{B} of 6_{2}

- A diagram is A -adequate if the all-A state graph has no loops.
- A diagram is B-adequate if the all-B state graph has no loops.
- A diagram is adequate if it is both A and B adequate.
- All reduced alternating link diagrams are adequate.

- A diagram is A -adequate if the all-A state graph has no loops.
- A diagram is B-adequate if the all-B state graph has no loops.
- A diagram is adequate if it is both A and B adequate.
- All reduced alternating link diagrams are adequate.

Remark: The all-A and all-B state graphs of a reduced alternating diagram are the same as the Tait graphs (checkerboard graphs).

Reduced Graphs

Figure: The reduced graph G_{A}^{\prime} of 4_{1}

Reduced Graphs

Figure: The reduced graph G_{A}^{\prime} of 4_{1}

To construct the reduced all-A graph G_{A}^{\prime}, remove multiple edges from G_{A}.

An Equivalence Relation on Laurent Series

Definition

For two Laurent series $P_{1}(q)$ and $P_{2}(q)$ we define

$$
P_{1}(q) \doteq_{n} P_{2}(q)
$$

if the first n coefficients agree up to a universal sign.

An Equivalence Relation on Laurent Series

Definition

For two Laurent series $P_{1}(q)$ and $P_{2}(q)$ we define

$$
P_{1}(q) \doteq_{n} P_{2}(q)
$$

if the first n coefficients agree up to a universal sign.
For example $-q^{-4}+2 q^{-3}-3+11 q \dot{=}_{5} 1-2 q+3 q^{4}$.

The Head and Tail

Definition

The tail of the colored Jones polynomial of a link L - if it exists is a series $T_{L}(q)$, with

$$
T_{L}(q) \doteq_{N} J_{L, N}(q), \text { for all } N
$$

The Head and Tail

Definition

The tail of the colored Jones polynomial of a link L - if it exists is a series $T_{L}(q)$, with

$$
T_{L}(q) \doteq_{N} J_{L, N}(q), \text { for all } N
$$

The head of the colored Jones polynomial of a link L - if it exists - is a series $H_{L}(q)$, with

$$
H_{L}(q) \doteq_{N} J_{L, N}\left(q^{-1}\right)=J_{\bar{L}, N}(q), \text { for all } N
$$

The Head and Tail

Definition

The tail of the colored Jones polynomial of a link L - if it exists is a series $T_{L}(q)$, with

$$
T_{L}(q) \doteq_{N} J_{L, N}(q), \text { for all } N
$$

The head of the colored Jones polynomial of a link L - if it exists - is a series $H_{L}(q)$, with

$$
H_{L}(q) \doteq_{N} J_{L, N}\left(q^{-1}\right)=J_{\bar{L}, N}(q), \text { for all } N
$$

Remark: $T_{L}(q)$ exists $\Longleftrightarrow J_{N, L}(q) \doteq_{N} J_{N+1, L}(q)$

Example

Here is a table of colored Jones polynomials for the knot 6_{2} :

$$
\begin{aligned}
N=2: & 1-2 q+2 q^{2}-2 q^{3}+2 q^{4}-q^{5}+q^{6} \\
N=3: & 1-2 q+0 q^{2}+4 q^{3}-5 q^{4}+6 q^{6}+\ldots \\
N=4: & 1-2 q+0 q^{2}+2 q^{3}+q^{4}-4 q^{5}-2 q^{6}+\ldots \\
N=5: & 1-2 q+0 q^{2}+2 q^{3}-q^{4}+2 q^{5}-6 q^{6}+\ldots \\
N=6: & 1-2 q+0 q^{2}+2 q^{3}-q^{4}+0 q^{5}-2 q^{7}+q^{8}+\ldots \\
N=7: & 1-2 q+0 q^{2}+2 q^{3}-q^{4}+0 q^{5}-2 q^{6}+4 q^{7}-3 q^{8}+\ldots \\
& T_{6_{2}}(q)=1-2 q+0 q^{2}+2 q^{3}-q^{4}+0 q^{5}-2 q^{6}+\ldots
\end{aligned}
$$

Theorem

Theorem (A)
 If L has an A-adequate diagram, then $T_{L}(q)$ exists. If L has an B-adequate diagram, then $H_{L}(q)$ exists.

Theorem

Theorem (A)

If L has an A-adequate diagram, then $T_{L}(q)$ exists. If L has an B-adequate diagram, then $H_{L}(q)$ exists.

Corollary

If L is an alternating link, then $T_{L}(q)$ and $H_{L}(q)$ exists.

The Main Lemma

Figure: The diagram $S_{B}^{(n)}$ for 6_{2}

Theorem (A., Dasbach)

If D is a reduced alternating diagram, then

$$
\tilde{J}_{n, L}(A) \doteq_{4(n+1)} S_{B}^{(n)}
$$

Remark: $S_{B}^{(n)} \in \mathbb{Q}(A) \hookrightarrow \mathbb{Q}[[A]]\left[A^{-1}\right]$

The Main Lemma

\longrightarrow

Figure: The diagram $S_{B}^{(n)}$ for 6_{2}

Corollary

$T_{L}(q)$ only depends on G_{A}^{\prime}

The Main Lemma

Figure: The diagram $S_{B}^{(n)}$ for 6_{2}

Corollary

$T_{L}(q)$ only depends on G_{A}^{\prime}
This induces a map T : Planar Graphs $\rightarrow \mathbb{Z}[[q]]$

Brief Sketch of Proof

Theorem

If D is a B-adequate diagram for a link L with corresponding $S_{B}^{(n)}$, then

$$
S_{B}^{(n)} \dot{=}_{4(n+1)} S_{B}^{(n+1)}
$$

Brief Sketch of Proof

Theorem

If D is a B-adequate diagram for a link L with corresponding $S_{B}^{(n)}$, then

$$
S_{B}^{(n)} \dot{=}_{4(n+1)} S_{B}^{(n+1)}
$$

Lemma

Existence

Properties
Leading Coefficients

Brief Sketch of Proof

Existence

Properties
Leading Coefficients

Brief Sketch of Proof

Existence

Properties
Leading Coefficients

Brief Sketch of Proof

Introduction
Properties of the Head and Tail

Existence

Properties
Leading Coefficients

Brief Sketch of Proof

Introduction
Properties of the Head and Tail

Existence

Properties
Leading Coefficients

Brief Sketch of Proof

Introduction
Properties of the Head and Tail

Brief Sketch of Proof

Torus Knots

Here is a table of the first N terms of $\pm q^{s_{N}} J_{N, K}(q)$ for the knot $\overline{8}_{19}$, the (negative) $(3,4)$ torus knot:

$$
\begin{array}{ll}
N=2: & 1 \\
N=3: & 1-q \\
N=4: & 1-q^{2}-q^{3} \\
N=5: & 1-q \\
N=6: & 1-q^{2}-q^{3} \\
N=7: & 1-q-q^{6}
\end{array}
$$

Torus Knots

Here is a table of the first N terms of $\pm q^{s_{N}} J_{N, K}(q)$ for the knot $\overline{8}_{19}$, the (negative) $(3,4)$ torus knot:

$$
\begin{array}{ll}
N=2: & 1 \\
N=3: & 1-q \\
N=4: & 1-q^{2}-q^{3} \\
N=5: & 1-q \\
N=6: & 1-q^{2}-q^{3} \\
N=7: & 1-q-q^{6}
\end{array}
$$

Theorem (A., Dasbach)

Let $p>m$. $A(m, p)$-torus knot has one head and one tail if $m=2$ and two heads and one tail if $m>2$. The two heads correspond to even or odd N.

Proof: Morton's formula

Theorem (A., Dasbach)

For $k>0$, and C_{n}, the cycle on n vertices,

- $T\left(C_{2 k+1}\right)=f\left(-q^{2 k},-q\right)$
(From Morton's formula for ($2,2 k+1$) torus knots)
- $T\left(C_{2 k}\right)=\Psi\left(q^{2 k-1}, q\right)$
(From Hikami's formula for ($2,2 k$) torus links)

$$
\begin{gathered}
f(a, b):=\sum_{k=-\infty}^{\infty} a^{k(k+1) / 2} b^{k(k-1) / 2} \\
\Psi(a, b):=\sum_{k=0}^{\infty} a^{k(k+1) / 2} b^{k(k-1) / 2}-\sum_{k=1}^{\infty} a^{k(k-1) / 2} b^{k(k+1) / 2}
\end{gathered}
$$

Products

Figure: Product of two checkerboard graphs

The previously defined function T respects this product.

Products

Figure: Product of two checkerboard graphs

The previously defined function T respects this product. Example:

$$
T(!)=T(\curvearrowleft) * T(!)
$$

Products

Figure: Product of two checkerboard graphs
The previously defined function T respects this product.
Example:

$$
T(!)=T(\square) * T(!)
$$

Thus,

$$
T_{\overline{6_{2}}}(q)=f\left(-q^{2},-q\right) * \Psi\left(q^{3}, q\right)
$$

Products

Figure: Product of two checkerboard graphs

The previously defined function T respects this product. Example:

$$
T(\varrho)=T(\varrho) * T(\square)
$$

Thus,

$$
T_{\overline{\sigma_{2}}}(q)=f\left(-q^{2},-q\right) * \Psi\left(q^{3}, q\right)
$$

The tail of any 2-bridge knot is a product of Ramanujan theta functions and false theta functions

What is this product on knots?

What is this product on knots?

Answer: Plumbing

Theorem (A., Dasbach)

For any A-adequate link L, there is an alternating link L_{0} with

$$
T_{L}(q)=T_{L_{0}}(q)
$$

Theorem (A., Dasbach)

For any A-adequate link L, there is an alternating link L_{0} with

$$
T_{L}(q)=T_{L_{0}}(q)
$$

For example,

For example,

$$
\dot{\doteq}_{4(n+1)}
$$

For example,

Thus $T_{8_{21}}(q)=\left[f\left(-q^{2},-q\right)\right]^{2}$.

Theorem (Dasbach, Lin)

If K is an A-adequate knot, the second coefficient of the $T_{K}(q)$ is $-\beta_{1}\left(G_{A}^{\prime}\right)$, that is the first Betti number of the reduced all-A graph; $\beta_{1}\left(G_{A}^{\prime}\right)=e-v+1$.

Theorem (Dasbach, Lin)

If K is an A-adequate knot, the second coefficient of the $T_{K}(q)$ is $-\beta_{1}\left(G_{A}^{\prime}\right)$, that is the first Betti number of the reduced all-A graph; $\beta_{1}\left(G_{A}^{\prime}\right)=e-v+1$.

Corollary (A., Dasbach)

If K is an A-adequate knot, then $T_{K}(q)=1$ if and only if G_{A}^{\prime} is a tree.

Theorem (Dasbach, Lin)

If K is an A-adequate knot, then

$$
T_{K}(q)=1-\beta q+\left(\binom{\beta}{2}-\tau\right) q^{2}+\ldots
$$

where $\beta=\beta_{1}\left(G_{A}^{\prime}\right)$ and τ is the number of triangles (3-cycles) in G_{A}^{\prime}

Theorem (Dasbach, Lin)

If K is an A-adequate knot, then

$$
T_{K}(q)=1-\beta q+\left(\binom{\beta}{2}-\tau\right) q^{2}+\ldots
$$

where $\beta=\beta_{1}\left(G_{A}^{\prime}\right)$ and τ is the number of triangles (3-cycles) in G_{A}^{\prime}

Vague Conjecture

The n-th coefficient is determined by β and subgraphs with n or fewer vertices

Theorem (Dasbach, Lin)

If K is an A-adequate knot, then

$$
T_{K}(q)=1-\beta q+\left(\binom{\beta}{2}-\tau\right) q^{2}+\ldots
$$

where $\beta=\beta_{1}\left(G_{A}^{\prime}\right)$ and τ is the number of triangles (3-cycles) in G_{A}^{\prime}

Vague Conjecture

The n-th coefficient is determined by β and subgraphs with n or fewer vertices

Theorem (Garoufalidis, Norin, Vuong)

The conjecture is true for $n=4$

Theorem (A)

If K is an A-adequate knot for which the shortest cycle in G_{A}^{\prime} is ℓ, then

$$
\begin{aligned}
T_{K}(q)= & 1-\beta q+\binom{\beta}{2} q^{2}-\binom{\beta}{3} q^{3} \\
& +\cdots+(-1)^{\ell-1}\left(\binom{\beta}{\ell-1}-c_{\ell}\right) q^{\ell-1}+O(\ell)
\end{aligned}
$$

where c_{ℓ} is the number of ℓ cycles.

Theorem (A)

If K is an A-adequate knot for which the shortest cycle in G_{A}^{\prime} is ℓ, then

$$
T_{K}(q)=(1-q)^{\beta}+(-1)^{\ell} c_{\ell} q^{\ell-1}+O(\ell)
$$

where c_{ℓ} is the number of ℓ cycles.

Thank You

