The Tail of the Colored Jones Polynomial

Cody Armond The Ohio State University - Mansfield

September 1, 2016

Table of contents

Introduction

- Colored Jones Polynomial
- Adequate Links
- The Head and Tail

Properties of the Head and Tail

- Existence
- Properties
- Leading Coefficients

Colored Jones Polynomial Adequate Links The Head and Tail

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N,L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link *L*, where *N* is a positive integer bigger than or equal to 2.

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N,L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link *L*, where *N* is a positive integer bigger than or equal to 2.

 J_{N,L}(q) is the quantum invariant link invariant associated with the N-dimensional irreducible representation of Uq(sl₂)

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N,L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link *L*, where *N* is a positive integer bigger than or equal to 2.

 J_{N,L}(q) is the quantum invariant link invariant associated with the N-dimensional irreducible representation of Uq(sl₂)

•
$$J_{N,L}(q) \in \mathbb{Z}[q,q^{-1}]$$
 if $|L|$ is odd.

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N,L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link *L*, where *N* is a positive integer bigger than or equal to 2.

• $J_{N,L}(q)$ is the quantum invariant link invariant associated with the *N*-dimensional irreducible representation of $U_q(\mathfrak{sl}_2)$

•
$$J_{N,L}(q) \in \mathbb{Z}[q,q^{-1}]$$
 if $|L|$ is odd.

• $q^{1/2}J_{N,L}(q)\in\mathbb{Z}[q,q^{-1}]$ if |L| is even.

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N,L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link *L*, where *N* is a positive integer bigger than or equal to 2.

- $J_{N,L}(q)$ is the quantum invariant link invariant associated with the *N*-dimensional irreducible representation of $U_q(\mathfrak{sl}_2)$
- $J_{N,L}(q) \in \mathbb{Z}[q,q^{-1}]$ if |L| is odd.
- $q^{1/2}J_{N,L}(q)\in\mathbb{Z}[q,q^{-1}]$ if |L| is even.
- $J_{2,K}(q)$ is the ordinary Jones polynomial for a knot K.

The Colored Jones Polynomial

The (normalized) colored Jones polynomial $J_{N,L}(q)$ is a sequence of Laurent polynomials, defined for a knot or link *L*, where *N* is a positive integer bigger than or equal to 2.

- $J_{N,L}(q)$ is the quantum invariant link invariant associated with the *N*-dimensional irreducible representation of $U_q(\mathfrak{sl}_2)$
- $J_{N,L}(q) \in \mathbb{Z}[q,q^{-1}]$ if |L| is odd.
- $q^{1/2}J_{N,L}(q)\in\mathbb{Z}[q,q^{-1}]$ if |L| is even.
- $J_{2,K}(q)$ is the ordinary Jones polynomial for a knot K.
- If *K* is the unknot $J_{N,K}(q) = 1$.

Colored Jones Polynomial Adequate Links The Head and Tail

Kauffman Bracket Relations

Colored Jones Polynomial Adequate Links The Head and Tail

Kauffman Bracket Relations

Colored Jones Polynomial Adequate Links The Head and Tail

Kauffman Bracket Relations

Colored Jones Polynomial Adequate Links The Head and Tail

Kauffman Bracket Relations

Figure: A and B smoothings

$$| = A (+A^{-1})$$
$$| = -A^2 - A^{-2}$$

Definition (Kauffman Bracket Skein Module)

For a 3-manifold *M*, a ring *R* (usually $\mathbb{Z}[A, A^{-1}]$ or $\mathbb{Q}(A)$), and an invertible element *A* of *R*:

 $S(M; R, A) := R\{\text{framed links in } M\}/(I, II)$

Colored Jones Polynomial Adequate Links The Head and Tail

Jones Wenzl Idempotent

$$\Delta_n := (-1)^n \frac{A^{2(n+1)} - A^{-2(n+1)}}{A^2 - A^{-2}}$$

Colored Jones Polynomial Adequate Links The Head and Tail

Jones Wenzl Idempotent

$$\Delta_n := (-1)^n \frac{A^{2(n+1)} - A^{-2(n+1)}}{A^2 - A^{-2}}$$

$$\square = \Delta_n$$

Colored Jones Polynomial Adequate Links The Head and Tail

Jones Wenzl Idempotent

$$\Delta_n := (-1)^n \frac{A^{2(n+1)} - A^{-2(n+1)}}{A^2 - A^{-2}}$$

$$\square = \Delta_n$$

Colored Jones Polynomial Adequate Links The Head and Tail

The Colored Jones Polynomial

If $L = \bigcup^{\square_n}$, then define $\tilde{J}_{n,L}(A) = \bigcup^{\square_n} \in S(\mathbb{R}^3; \mathbb{Z}[A, A^{-1}], A) \cong \mathbb{Z}[A, A^{-1}]$

Colored Jones Polynomial Adequate Links The Head and Tail

The Colored Jones Polynomial

If L =then define $\tilde{J}_{n,L}(A) =$ $) \in \mathcal{S}(\mathbb{R}^3;\mathbb{Z}[\textit{A},\textit{A}^{-1}],\textit{A}) \cong \mathbb{Z}[\textit{A},\textit{A}^{-1}]$ $J_{n+1,L}(q) := \left. \frac{\tilde{J}_{n,L}(A)}{\Delta_n} \right|_{A=q^{-1}}$

For *L* an unframed link, give it the 0-framing. Changing framing changes the values of $\tilde{J}_{n,L}(A)$ by multiplying by $\pm A$ to some power.

Colored Jones Polynomial Adequate Links The Head and Tail

Colored Jones Polynomial Adequate Links The Head and Tail

Figure: A and B smoothings

Figure: The All-B state graph G_B of 6_2

Colored Jones Polynomial Adequate Links The Head and Tail

Colored Jones Polynomial Adequate Links The Head and Tail

- A diagram is A-adequate if the all-A state graph has no loops.
- A diagram is B-adequate if the all-B state graph has no loops.
- A diagram is adequate if it is both A and B adequate.
- All reduced alternating link diagrams are adequate.

Colored Jones Polynomial Adequate Links The Head and Tail

- A diagram is A-adequate if the all-A state graph has no loops.
- A diagram is B-adequate if the all-B state graph has no loops.
- A diagram is adequate if it is both A and B adequate.
- All reduced alternating link diagrams are adequate.

Remark: The all-A and all-B state graphs of a reduced alternating diagram are the same as the Tait graphs (checkerboard graphs).

Colored Jones Polynomial Adequate Links The Head and Tail

Reduced Graphs

Figure: The reduced graph G'_A of 4_1

Colored Jones Polynomial Adequate Links The Head and Tail

Reduced Graphs

Figure: The reduced graph G'_A of 4_1

To construct the reduced all-A graph G'_A , remove multiple edges from G_A .

Colored Jones Polynomial Adequate Links The Head and Tail

An Equivalence Relation on Laurent Series

Definition

For two Laurent series $P_1(q)$ and $P_2(q)$ we define

 $P_1(q) \doteq_n P_2(q)$

if the first *n* coefficients agree up to a universal sign.

Colored Jones Polynomial Adequate Links The Head and Tail

An Equivalence Relation on Laurent Series

Definition

For two Laurent series $P_1(q)$ and $P_2(q)$ we define

 $P_1(q) \doteq_n P_2(q)$

if the first *n* coefficients agree up to a universal sign.

For example $-q^{-4} + 2q^{-3} - 3 + 11q \doteq_5 1 - 2q + 3q^4$.

Colored Jones Polynomial Adequate Links The Head and Tail

The Head and Tail

Definition

The tail of the colored Jones polynomial of a link L – if it exists – is a series $T_L(q)$, with

$$T_L(q) \doteq_N J_{L,N}(q)$$
, for all N

Colored Jones Polynomial Adequate Links The Head and Tail

The Head and Tail

Definition

The tail of the colored Jones polynomial of a link L – if it exists – is a series $T_L(q)$, with

$$T_L(q) \doteq_N J_{L,N}(q)$$
, for all N

The head of the colored Jones polynomial of a link L – if it exists – is a series $H_L(q)$, with

$$H_L(q) \doteq_N J_{L,N}(q^{-1}) = J_{\overline{L},N}(q), \text{ for all } N$$

Colored Jones Polynomial Adequate Links The Head and Tail

The Head and Tail

Definition

The tail of the colored Jones polynomial of a link L – if it exists – is a series $T_L(q)$, with

$$T_L(q) \doteq_N J_{L,N}(q)$$
, for all N

The head of the colored Jones polynomial of a link L – if it exists – is a series $H_L(q)$, with

$$H_L(q) \doteq_N J_{L,N}(q^{-1}) = J_{\overline{L},N}(q), \text{ for all } N$$

Remark: $T_L(q)$ exists $\iff J_{N,L}(q) \doteq_N J_{N+1,L}(q)$

Here is a table of colored Jones polynomials for the knot 62:

$$\begin{array}{ll} N=2: & 1-2q+2q^2-2q^3+2q^4-q^5+q^6\\ N=3: & 1-2q+0q^2+4q^3-5q^4+6q^6+\ldots\\ N=4: & 1-2q+0q^2+2q^3+q^4-4q^5-2q^6+\ldots\\ N=5: & 1-2q+0q^2+2q^3-q^4+2q^5-6q^6+\ldots\\ N=6: & 1-2q+0q^2+2q^3-q^4+0q^5-2q^7+q^8+\ldots\\ N=7: & 1-2q+0q^2+2q^3-q^4+0q^5-2q^6+4q^7-3q^8+\ldots\\ T_{6_2}(q)=1-2q+0q^2+2q^3-q^4+0q^5-2q^6+\ldots \end{array}$$

Theorem

Colored Jones Polynomial Adequate Links The Head and Tail

Theorem (A)

If L has an A-adequate diagram, then $T_L(q)$ exists. If L has an B-adequate diagram, then $H_L(q)$ exists.

Theorem

Colored Jones Polynomial Adequate Links The Head and Tail

Theorem (A)

If L has an A-adequate diagram, then $T_L(q)$ exists. If L has an B-adequate diagram, then $H_L(q)$ exists.

Corollary

If L is an alternating link, then $T_L(q)$ and $H_L(q)$ exists.

Existence Properties Leading Coefficients

The Main Lemma

Figure: The diagram $S_B^{(n)}$ for 6_2

Theorem (A., Dasbach)

If D is a reduced alternating diagram, then

$$\widetilde{J}_{n,L}(A) \doteq_{4(n+1)} S_B^{(n)}$$

Remark: $S^{(n)}_B \in \mathbb{Q}(A) \hookrightarrow \mathbb{Q}[[A]][A^{-1}]$

Existence Properties Leading Coefficients

The Main Lemma

Figure: The diagram $S_B^{(n)}$ for 6_2

Corollary

 $T_L(q)$ only depends on G'_A

Existence Properties Leading Coefficients

The Main Lemma

Figure: The diagram $S_B^{(n)}$ for 6_2

Corollary

 $T_L(q)$ only depends on G'_A

This induces a map T: Planar Graphs $\rightarrow \mathbb{Z}[[q]]$

Existence Properties Leading Coefficients

Brief Sketch of Proof

Theorem

If D is a B-adequate diagram for a link L with corresponding $S_B^{(n)}$, then

 $S_B^{(n)} \doteq_{4(n+1)} S_B^{(n+1)}$
Existence Properties Leading Coefficients

Brief Sketch of Proof

Theorem

If D is a B-adequate diagram for a link L with corresponding $S_{\rm B}^{(n)}$, then

 $S_B^{(n)} \doteq_{4(n+1)} S_B^{(n+1)}$

Lemma

Existence Properties Leading Coefficients

Existence Properties Leading Coefficients

Existence Properties Leading Coefficients

Existence Properties Leading Coefficients

Existence Properties Leading Coefficients

Existence Properties Leading Coefficients

Existence Properties Leading Coefficients

Here is a table of the first *N* terms of $\pm q^{s_N} J_{N,K}(q)$ for the knot $\bar{8}_{19}$, the (negative) (3, 4) torus knot:

$$\begin{array}{ll} N=2: & 1 \\ N=3: & 1-q \\ N=4: & 1-q^2-q^3 \\ N=5: & 1-q \\ N=6: & 1-q^2-q^3 \\ N=7: & 1-q-q^6 \end{array}$$

Torus Knots

Torus Knots

Here is a table of the first *N* terms of $\pm q^{s_N} J_{N,K}(q)$ for the knot $\bar{8}_{19}$, the (negative) (3,4) torus knot:

$$N = 2: 1$$

$$N = 3: 1 - q$$

$$N = 4: 1 - q^{2} - q^{3}$$

$$N = 5: 1 - q$$

$$N = 6: 1 - q^{2} - q^{3}$$

$$N = 7: 1 - q - q^{6}$$

Theorem (A., Dasbach)

Let p > m. A (m, p)-torus knot has one head and one tail if m = 2 and two heads and one tail if m > 2. The two heads correspond to even or odd N.

Proof: Morton's formula

Theorem (A., Dasbach)

For k > 0, and C_n , the cycle on n vertices,

- $T(C_{2k+1}) = f(-q^{2k}, -q)$ (From Morton's formula for (2, 2k + 1) torus knots)
- T(C_{2k}) = Ψ(q^{2k-1}, q) (From Hikami's formula for (2, 2k) torus links)

$$f(a,b) := \sum_{k=-\infty}^{\infty} a^{k(k+1)/2} b^{k(k-1)/2}$$

$$\Psi(a,b) := \sum_{k=0}^{\infty} a^{k(k+1)/2} b^{k(k-1)/2} - \sum_{k=1}^{\infty} a^{k(k-1)/2} b^{k(k+1)/2}$$

Existence Properties Leading Coefficients

Products

Figure: Product of two checkerboard graphs

The previously defined function T respects this product.

Existence Properties Leading Coefficients

Products

Figure: Product of two checkerboard graphs

The previously defined function T respects this product. Example:

$$T(\bigtriangleup) = T(\bigtriangleup) * T(\bigsqcup)$$

Existence Properties Leading Coefficients

Products

Figure: Product of two checkerboard graphs

The previously defined function T respects this product. Example:

$$T(\bigtriangleup) = T(\bigtriangleup) * T(\bigsqcup)$$

Thus,

$$T_{ar{6_2}}(q) = f(-q^2, -q) * \Psi(q^3, q)$$

Existence Properties Leading Coefficients

Products

Figure: Product of two checkerboard graphs

The previously defined function T respects this product. Example:

$$T(\bigtriangleup) = T(\bigtriangleup) * T(\Box)$$

Thus,

$$T_{\bar{6_2}}(q) = f(-q^2, -q) * \Psi(q^3, q)$$

The tail of any 2-bridge knot is a product of Ramanujan theta functions and false theta functions

Existence Properties Leading Coefficients

What is this product on knots?

Existence Properties Leading Coefficients

What is this product on knots?

Answer: Plumbing

Theorem (A., Dasbach)

For any A-adequate link L, there is an alternating link L₀ with

$T_L(q)=T_{L_0}(q)$

Theorem (A., Dasbach)

For any A-adequate link L, there is an alternating link L₀ with

$T_L(q)=T_{L_0}(q)$

Existence Properties Leading Coefficients

For example,

 $\doteq_{4(n+1)}$

Existence Properties Leading Coefficients

 $\doteq_{4(n+1)}$

For example,

Existence Properties Leading Coefficients

For example,

Existence Properties Leading Coefficients

Thus $T_{8_{21}}(q) = [f(-q^2, -q)]^2$.

Theorem (Dasbach, Lin)

If *K* is an A-adequate knot, the second coefficient of the $T_K(q)$ is $-\beta_1(G'_A)$, that is the first Betti number of the reduced all-A graph; $\beta_1(G'_A) = e - v + 1$.

Theorem (Dasbach, Lin)

If K is an A-adequate knot, the second coefficient of the $T_K(q)$ is $-\beta_1(G'_A)$, that is the first Betti number of the reduced all-A graph; $\beta_1(G'_A) = e - v + 1$.

Corollary (A., Dasbach)

If K is an A-adequate knot, then $T_K(q) = 1$ if and only if G'_A is a tree.

Theorem (Dasbach, Lin)

If K is an A-adequate knot, then

$$T_{\mathcal{K}}(q) = 1 - \beta q + \left(\left(\begin{array}{c} \beta \\ 2 \end{array} \right) - \tau \right) q^2 + \dots$$

where $\beta = \beta_1(G'_A)$ and τ is the number of triangles (3-cycles) in G'_A

Theorem (Dasbach, Lin)

If K is an A-adequate knot, then

$$T_{\mathcal{K}}(q) = 1 - \beta q + \left(\left(\begin{array}{c} \beta \\ 2 \end{array} \right) - \tau \right) q^2 + \dots$$

where $\beta = \beta_1(G'_A)$ and τ is the number of triangles (3-cycles) in G'_A

Vague Conjecture

The n-th coefficient is determined by β and subgraphs with n or fewer vertices

Theorem (Dasbach, Lin)

If K is an A-adequate knot, then

$$T_{\mathcal{K}}(q) = 1 - \beta q + \left(\left(\begin{array}{c} \beta \\ 2 \end{array} \right) - \tau \right) q^2 + \dots$$

where $\beta = \beta_1(G'_A)$ and τ is the number of triangles (3-cycles) in G'_A

Vague Conjecture

The n-th coefficient is determined by β and subgraphs with n or fewer vertices

Theorem (Garoufalidis, Norin, Vuong)

The conjecture is true for n = 4

Theorem (A)

If K is an A-adequate knot for which the shortest cycle in G_A' is $\ell,$ then

$$T_{\mathcal{K}}(q) = 1 - \beta q + \begin{pmatrix} \beta \\ 2 \end{pmatrix} q^2 - \begin{pmatrix} \beta \\ 3 \end{pmatrix} q^3 + \dots + (-1)^{\ell-1} \left(\begin{pmatrix} \beta \\ \ell - 1 \end{pmatrix} - c_\ell \right) q^{\ell-1} + O(\ell)$$

where c_{ℓ} is the number of ℓ cycles.

Theorem (A)

If K is an A-adequate knot for which the shortest cycle in G_A' is $\ell,$ then

$$T_{\mathcal{K}}(q) \;\; = \;\; (1-q)^{eta} + (-1)^{\ell} c_{\ell} q^{\ell-1} + O(\ell)$$

where c_{ℓ} is the number of ℓ cycles.

Existence Properties Leading Coefficients

Thank You

C. Armond The Tail of the Colored Jones Polynomial