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The Colored Jones Polynomial

The (normalized) colored Jones polynomial JN,L(q) is a
sequence of Laurent polynomials, defined for a knot or link L,
where N is a positive integer bigger than or equal to 2.

JN,L(q) is the quantum invariant link invariant associated
with the N-dimensional irreducible representation of
Uq(sl2)

JN,L(q) ∈ Z[q,q−1] if |L| is odd.
q1/2JN,L(q) ∈ Z[q,q−1] if |L| is even.
J2,K (q) is the ordinary Jones polynomial for a knot K .
If K is the unknot JN,K (q) = 1.
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Kauffman Bracket Relations

AB

Figure: A and B smoothings

I = A +A−1

II = −A2 − A−2

Definition (Kauffman Bracket Skein Module)

For a 3-manifold M, a ring R (usually Z[A,A−1] or Q(A) ), and
an invertible element A of R:

S(M; R,A) := R{framed links in M}/(I, II)
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Jones Wenzl Idempotent
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The Colored Jones Polynomial

If L = , then define

J̃n,L(A) =

n

∈ S(R3;Z[A,A−1],A) ∼= Z[A,A−1]

Jn+1,L(q) :=
J̃n,L(A)

∆n

∣∣∣∣∣
A=q−1/4

For L an unframed link, give it the 0-framing. Changing framing
changes the values of J̃n,L(A) by multiplying by ±A to some
power.
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Figure: A and B smoothings

−→ −→

Figure: The All-B state graph GB of 62
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−→

A diagram is A-adequate if the all-A state graph has no
loops.
A diagram is B-adequate if the all-B state graph has no
loops.
A diagram is adequate if it is both A and B adequate.
All reduced alternating link diagrams are adequate.

Remark: The all-A and all-B state graphs of a reduced
alternating diagram are the same as the Tait graphs
(checkerboard graphs).
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Reduced Graphs

−→ −→

Figure: The reduced graph G′
A of 41

To construct the reduced all-A graph G′A, remove multiple
edges from GA.
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An Equivalence Relation on Laurent Series

Definition
For two Laurent series P1(q) and P2(q) we define

P1(q) =̇n P2(q)

if the first n coefficients agree up to a universal sign.

For example −q−4 + 2q−3 − 3 + 11q =̇5 1− 2q + 3q4.
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The Head and Tail

Definition
The tail of the colored Jones polynomial of a link L – if it exists –
is a series TL(q), with

TL(q) =̇N JL,N(q), for all N

The head of the colored Jones polynomial of a link L – if it
exists – is a series HL(q), with

HL(q) =̇N JL,N(q−1) = JL̄,N(q), for all N

Remark: TL(q) exists⇐⇒ JN,L(q) =̇N JN+1,L(q)
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Example

Here is a table of colored Jones polynomials for the knot 62:

N = 2 : 1− 2q + 2q2 − 2q3 + 2q4 − q5 + q6

N = 3 : 1− 2q + 0q2 + 4q3 − 5q4 + 6q6 + . . .
N = 4 : 1− 2q + 0q2 + 2q3 + q4 − 4q5 − 2q6 + . . .
N = 5 : 1− 2q + 0q2 + 2q3 − q4 + 2q5 − 6q6 + . . .
N = 6 : 1− 2q + 0q2 + 2q3 − q4 + 0q5 − 2q7 + q8 + . . .
N = 7 : 1− 2q + 0q2 + 2q3 − q4 + 0q5 − 2q6 + 4q7 − 3q8 + . . .

T62(q) = 1− 2q + 0q2 + 2q3 − q4 + 0q5 − 2q6 + . . .

C. Armond The Tail of the Colored Jones Polynomial
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Theorem

Theorem (A)

If L has an A-adequate diagram, then TL(q) exists.
If L has an B-adequate diagram, then HL(q) exists.

Corollary

If L is an alternating link, then TL(q) and HL(q) exists.
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The Main Lemma

−→ −→ n

n n

n

n

n

n n

nn

n n

Figure: The diagram S(n)
B for 62

Theorem (A., Dasbach)
If D is a reduced alternating diagram, then

J̃n,L(A) =̇4(n+1) S(n)
B

Remark: S(n)
B ∈ Q(A) ↪→ Q[[A]][A−1]
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Corollary

TL(q) only depends on G′A

This induces a map T : Planar Graphs→ Z[[q]]
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Brief Sketch of Proof

Theorem
If D is a B-adequate diagram for a link L with corresponding
S(n)

B , then
S(n)
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Torus Knots

Here is a table of the first N terms of ±qsN JN,K (q) for the knot
8̄19, the (negative) (3,4) torus knot:

N = 2 : 1
N = 3 : 1− q
N = 4 : 1− q2 − q3

N = 5 : 1− q
N = 6 : 1− q2 − q3

N = 7 : 1− q − q6

Theorem (A., Dasbach)

Let p > m. A (m,p)-torus knot has one head and one tail if
m = 2 and two heads and one tail if m > 2. The two heads
correspond to even or odd N.

Proof: Morton’s formula
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Theorem (A., Dasbach)
For k > 0, and Cn, the cycle on n vertices,

T (C2k+1) = f (−q2k ,−q)
(From Morton’s formula for (2,2k + 1) torus knots)
T (C2k ) = Ψ(q2k−1,q)
(From Hikami’s formula for (2,2k) torus links)

f (a,b) :=
∞∑

k=−∞
ak(k+1)/2bk(k−1)/2

Ψ(a,b) :=
∞∑

k=0

ak(k+1)/2bk(k−1)/2 −
∞∑

k=1

ak(k−1)/2bk(k+1)/2
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Products

G1

*
G2

=
G1

G2

Figure: Product of two checkerboard graphs

The previously defined function T respects this product.

Example:

T ( ) = T ( ) ∗ T ( )

Thus,
T6̄2

(q) = f (−q2,−q) ∗Ψ(q3,q)

The tail of any 2-bridge knot is a product of Ramanujan theta
functions and false theta functions
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Answer: Plumbing

−→
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Theorem (A., Dasbach)
For any A-adequate link L, there is an alternating link L0 with

TL(q) = TL0(q)

−→
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=̇4(n+1) =̇4(n+1)

For example,

=̇4(n+1) =̇4(n+1)
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−→ −→

Thus T821(q) =
[
f (−q2,−q)

]2.
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Theorem (Dasbach, Lin)

If K is an A-adequate knot, the second coefficient of the TK (q)
is −β1(G′A), that is the first Betti number of the reduced all-A
graph; β1(G′A) = e − v + 1.

Corollary (A., Dasbach)

If K is an A-adequate knot, then TK (q) = 1 if and only if G′A is a
tree.
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Theorem (Dasbach, Lin)
If K is an A-adequate knot, then

TK (q) = 1− βq +

((
β
2

)
− τ
)

q2 + . . .

where β = β1(G′A) and τ is the number of triangles (3-cycles) in
G′A

Vague Conjecture
The n-th coefficient is determined by β and subgraphs with n or
fewer vertices

Theorem (Garoufalidis, Norin, Vuong)
The conjecture is true for n = 4
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Theorem (A)

If K is an A-adequate knot for which the shortest cycle in G′A is
`, then

TK (q) = 1− βq +

(
β
2

)
q2 −

(
β
3

)
q3

+ · · ·+ (−1)`−1
((

β
`− 1

)
− c`

)
q`−1 + O(`)

where c` is the number of ` cycles.
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Theorem (A)

If K is an A-adequate knot for which the shortest cycle in G′A is
`, then

TK (q) = (1− q)β + (−1)`c`q`−1 + O(`)

where c` is the number of ` cycles.
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Thank You
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