7 Problems on Skew-Symmetric Matrices

Linear algebra problems and solutions

Problem 564

Let $A$ and $B$ be $n\times n$ skew-symmetric matrices. Namely $A^{\trans}=-A$ and $B^{\trans}=-B$.

(a) Prove that $A+B$ is skew-symmetric.

(b) Prove that $cA$ is skew-symmetric for any scalar $c$.

(c) Let $P$ be an $m\times n$ matrix. Prove that $P^{\trans}AP$ is skew-symmetric.

(d) Suppose that $A$ is real skew-symmetric. Prove that $iA$ is an Hermitian matrix.

(e) Prove that if $AB=-BA$, then $AB$ is a skew-symmetric matrix.

(f) Let $\mathbf{v}$ be an $n$-dimensional column vecotor. Prove that $\mathbf{v}^{\trans}A\mathbf{v}=0$.

(g) Suppose that $A$ is a real skew-symmetric matrix and $A^2\mathbf{v}=\mathbf{0}$ for some vector $\mathbf{v}\in \R^n$. Then prove that $A\mathbf{v}=\mathbf{0}$.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) Prove that $A+B$ is skew-symmetric.

We have
\begin{align*}
(A+B)^{\trans}=A^{\trans}+B^{\trans}=(-A)+(-B)=-(A+B).
\end{align*}
Hence $A+B$ is skew-symmetric.

(b) Prove that $cA$ is skew-symmetric for any scalar $c$.

We compute
\begin{align*}
(cA)^{\trans}=cA^{\trans}=c(-A)=-cA.
\end{align*}
Thus, $cA$ is skew-symmetric.

(c) Let $P$ be an $m\times n$ matrix. Prove that $P^{\trans}AP$ is skew-symmetric.

Using the properties of transpose, we have
\begin{align*}
(P^{\trans}AP)^{\trans}&=P^{\trans}A^{\trans}(P^{\trans})^{\trans}=P^{\trans}A^{\trans}P\\
&=P^{\trans}(-A)P=-(P^{\trans}AP).
\end{align*}
This implies that $P^{\trans}AP$ is skew-symmetric.

(d) Suppose that $A$ is real skew-symmetric. Prove that $iA$ is an Hermitian matrix.

Note that since $A$ is real, we have $\bar{A}=A$.
Then we have
\begin{align*}
(\overline{iA})^{\trans}=(\bar{i}\bar{A})^{\trans}=(-iA)^{\trans}=(-i)A^{\trans}=(-i)(-A)=iA.
\end{align*}
It follows that $iA$ is Hermitian.

(e) Prove that if $AB=-BA$, then $AB$ is a skew-symmetric matrix.

We calculate
\begin{align*}
(AB)^{\trans}&=B^{\trans}A^{\trans}=(-B)(-A)\\
&=BA=-AB,
\end{align*}
where the last step follows from the assumption $AB=-BA$.
This proves that $AB$ is skew-symmetric.

(f) Let $\mathbf{v}$ be an $n$-dimensional column vecotor. Prove that $\mathbf{v}^{\trans}A\mathbf{v}=0$.

Observe that $\mathbf{v}^{\trans}A\mathbf{v}$ is a $1\times 1$ matrix, or just a number.
So we have
\begin{align*}
\mathbf{v}^{\trans}A\mathbf{v}&=(\mathbf{v}^{\trans}A\mathbf{v})^{\trans}=\mathbf{v}^{\trans}A^{\trans}(\mathbf{v}^{\trans})^{\trans}\\
&=\mathbf{v}^{\trans}A^{\trans}\mathbf{v}=\mathbf{v}^{\trans}(-A)\mathbf{v}=-(\mathbf{v}^{\trans}A\mathbf{v}).
\end{align*}
This yields that $2\mathbf{v}^{\trans}A\mathbf{v}=0$, and hence $\mathbf{v}^{\trans}A\mathbf{v}=0$.

(g) Suppose that $A$ is a real skew-symmetric matrix and $A^2\mathbf{v}=\mathbf{0}$ for some vector $\mathbf{v}\in \R^n$. Then prove that $A\mathbf{v}=\mathbf{0}$.

Let us compute the length of the vector $A\mathbf{v}$.
We have
\begin{align*}
\|A\mathbf{v}\|&=(A\mathbf{v})^{\trans}(A\mathbf{v})=\mathbf{v}^{\trans}A^{\trans}A\mathbf{v}\\
&=\mathbf{v}^{\trans}(-A)A\mathbf{v}=-\mathbf{v}^{\trans}A^2\mathbf{v}\\
&=-\mathbf{v}\mathbf{0} &&\text{by assumption}\\
&=0.
\end{align*}
Since the length $\|A\mathbf{v}\|=0$, we conclude that $A\mathbf{v}=\mathbf{0}$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Express a Hermitian Matrix as a Sum of Real Symmetric Matrix and a Real Skew-Symmetric MatrixExpress a Hermitian Matrix as a Sum of Real Symmetric Matrix and a Real Skew-Symmetric Matrix Recall that a complex matrix is called Hermitian if $A^*=A$, where $A^*=\bar{A}^{\trans}$. Prove that every Hermitian matrix $A$ can be written as the sum \[A=B+iC,\] where $B$ is a real symmetric matrix and $C$ is a real skew-symmetric matrix.   Proof. Since […]
  • Eigenvalues of a Hermitian Matrix are Real NumbersEigenvalues of a Hermitian Matrix are Real Numbers Show that eigenvalues of a Hermitian matrix $A$ are real numbers. (The Ohio State University Linear Algebra Exam Problem)   We give two proofs. These two proofs are essentially the same. The second proof is a bit simpler and concise compared to the first one. […]
  • Sum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All ZeroSum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All Zero Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if \[A_1^2+A_2^2+\cdots+A_m^2=\calO,\] where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$.   Hint. Recall that a complex matrix $A$ is Hermitian if […]
  • Questions About the Trace of a MatrixQuestions About the Trace of a Matrix Let $A=(a_{i j})$ and $B=(b_{i j})$ be $n\times n$ real matrices for some $n \in \N$. Then answer the following questions about the trace of a matrix. (a) Express $\tr(AB^{\trans})$ in terms of the entries of the matrices $A$ and $B$. Here $B^{\trans}$ is the transpose matrix of […]
  • Subspaces of Symmetric, Skew-Symmetric MatricesSubspaces of Symmetric, Skew-Symmetric Matrices Let $V$ be the vector space over $\R$ consisting of all $n\times n$ real matrices for some fixed integer $n$. Prove or disprove that the following subsets of $V$ are subspaces of $V$. (a) The set $S$ consisting of all $n\times n$ symmetric matrices. (b) The set $T$ consisting of […]
  • The Length of a Vector is Zero if and only if the Vector is the Zero VectorThe Length of a Vector is Zero if and only if the Vector is the Zero Vector Let $\mathbf{v}$ be an $n \times 1$ column vector. Prove that $\mathbf{v}^\trans \mathbf{v} = 0$ if and only if $\mathbf{v}$ is the zero vector $\mathbf{0}$.   Proof. Let $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} $. Then we […]
  • If $A$ is a Skew-Symmetric Matrix, then $I+A$ is Nonsingular and $(I-A)(I+A)^{-1}$ is OrthogonalIf $A$ is a Skew-Symmetric Matrix, then $I+A$ is Nonsingular and $(I-A)(I+A)^{-1}$ is Orthogonal Let $A$ be an $n\times n$ real skew-symmetric matrix. (a) Prove that the matrices $I-A$ and $I+A$ are nonsingular. (b) Prove that \[B=(I-A)(I+A)^{-1}\] is an orthogonal matrix.   Proof. (a) Prove that the matrices $I-A$ and $I+A$ are nonsingular. The […]
  • Symmetric Matrices and the Product of Two MatricesSymmetric Matrices and the Product of Two Matrices Let $A$ and $B$ be $n \times n$ real symmetric matrices. Prove the followings. (a) The product $AB$ is symmetric if and only if $AB=BA$. (b) If the product $AB$ is a diagonal matrix, then $AB=BA$.   Hint. A matrix $A$ is called symmetric if $A=A^{\trans}$. In […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
Determine a Condition on $a, b$ so that Vectors are Linearly Dependent

Let \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} 1 \\ a \\ 5 \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 0 \\ 4 \\...

Close