A Group of Order the Square of a Prime is Abelian

Abelian Group problems and solutions

Problem 20

Suppose the order of a group $G$ is $p^2$, where $p$ is a prime number.
Show that

(a) the group $G$ is an abelian group, and

(b) the group $G$ is isomorphic to either $\Zmod{p^2}$ or $\Zmod{p} \times \Zmod{p}$ without using the fundamental theorem of abelian groups.

LoadingAdd to solve later

Sponsored Links

Hint.

Review the following problems.

  1. The center of a p-group is not trivial (post 1)
  2. If the quotient by the center is cyclic, then the group is abelian (post 2)

Proof.

(a) A group of order $p^2$ is abelian.

Since $G$ is a $p$-group, its center is not trivial (see post 1   for a proof.)

If the center $Z(G)=G$, then $G$ is abelian so assume that $Z(G)$ is a proper nontrivial subgroup. Then the center must have order $p$ and it follows that the order of the quotient $G/Z(G)$ is $p$, hence $G/Z(G)$ is a cyclic group.

Thus $G$ is abelian by the fact proved in post 2.

(b) The group $G$ is isomorphic to either $\Zmod{p^2}$ or $\Zmod{p} \times \Zmod{p}$

Let $x \in G$ be any nontrivial element of $G$. If $x \in G$ has order $p^2$, then $G=\langle x \rangle \cong \Zmod{p^2}$. If the order of $x$ is $p$, then take $y \in G \setminus \langle x \rangle$. Then the order of $y$ is also $p$.

Since the subgroup $\langle x, y \rangle$ generated by $x$ and $y$ is properly bigger than the subgroup $\langle x \rangle$, we must have $G=\langle x, y \rangle$.
We claim that $\langle x, y \rangle \cong \langle x \rangle \times \langle y \rangle$.


Define a map $f:\langle x \rangle \times \langle y \rangle \to \langle x, y \rangle$ by sending $(x^a, y^b)$ to $x^ay^b$. This is a group homomorphism because for any elements $(x^{a_1}, y^{b_1})$ and $(x^{a_2}, y^{b_2})$, we have
\begin{align*}
f\left( (x^{a_1}, y^{b_1})(x^{a_2}, y^{b_2}) \right) &=f\left (x^{a_1+a_2}, y^{b_1+b_2})\right) =x^{a_1+a_2} y^{b_1+b_2}\\
& =x^{a_1}y^{b_1}x^{a_2}y^{b_2} =f\left( (x^{a_1}, y^{b_1}) \right) f\left( (x^{a_2}, y^{b_2}) \right).
\end{align*}

Here we used the result of part (a) that $G$ is abelian in the third equality.


We claim that the homomorphism $f$ is injective.
If $f\left (x^a, y^b) \right)=1$, we have $x^a=y^b$ but since $y \not \in \langle x \rangle$ we must have $a=b=0$. Thus the kernel is trivial, hence $f$ is injective.

Since $\langle x \rangle \times \langle y \rangle \cong \Zmod{p} \times \Zmod{p}$ has order $p^2$ and $f$ is injective, the homomorphism must be surjective as well, hence it is an isomorphism.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Abelian Normal subgroup, Quotient Group, and Automorphism GroupAbelian Normal subgroup, Quotient Group, and Automorphism Group Let $G$ be a finite group and let $N$ be a normal abelian subgroup of $G$. Let $\Aut(N)$ be the group of automorphisms of $G$. Suppose that the orders of groups $G/N$ and $\Aut(N)$ are relatively prime. Then prove that $N$ is contained in the center of […]
  • The Index of the Center of a Non-Abelian $p$-Group is Divisible by $p^2$The Index of the Center of a Non-Abelian $p$-Group is Divisible by $p^2$ Let $p$ be a prime number. Let $G$ be a non-abelian $p$-group. Show that the index of the center of $G$ is divisible by $p^2$. Proof. Suppose the order of the group $G$ is $p^a$, for some $a \in \Z$. Let $Z(G)$ be the center of $G$. Since $Z(G)$ is a subgroup of $G$, the order […]
  • Group of Order $pq$ is Either Abelian or the Center is TrivialGroup of Order $pq$ is Either Abelian or the Center is Trivial Let $G$ be a group of order $|G|=pq$, where $p$ and $q$ are (not necessarily distinct) prime numbers. Then show that $G$ is either abelian group or the center $Z(G)=1$. Hint. Use the result of the problem "If the Quotient by the Center is Cyclic, then the Group is […]
  • If the Quotient by the Center is Cyclic, then the Group is AbelianIf the Quotient by the Center is Cyclic, then the Group is Abelian Let $Z(G)$ be the center of a group $G$. Show that if $G/Z(G)$ is a cyclic group, then $G$ is abelian. Steps. Write $G/Z(G)=\langle \bar{g} \rangle$ for some $g \in G$. Any element $x\in G$ can be written as $x=g^a z$ for some $z \in Z(G)$ and $a \in \Z$. Using […]
  • The Center of the Symmetric group is Trivial if $n>2$The Center of the Symmetric group is Trivial if $n>2$ Show that the center $Z(S_n)$ of the symmetric group with $n \geq 3$ is trivial. Steps/Hint Assume $Z(S_n)$ has a non-identity element $\sigma$. Then there exist numbers $i$ and $j$, $i\neq j$, such that $\sigma(i)=j$ Since $n\geq 3$ there exists another […]
  • Equivalent Definitions of Characteristic Subgroups. Center is Characteristic.Equivalent Definitions of Characteristic Subgroups. Center is Characteristic. Let $H$ be a subgroup of a group $G$. We call $H$ characteristic in $G$ if for any automorphism $\sigma\in \Aut(G)$ of $G$, we have $\sigma(H)=H$. (a) Prove that if $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$, then $H$ is characteristic in $G$. (b) Prove that the center […]
  • Centralizer, Normalizer, and Center of the Dihedral Group $D_{8}$Centralizer, Normalizer, and Center of the Dihedral Group $D_{8}$ Let $D_8$ be the dihedral group of order $8$. Using the generators and relations, we have \[D_{8}=\langle r,s \mid r^4=s^2=1, sr=r^{-1}s\rangle.\] (a) Let $A$ be the subgroup of $D_8$ generated by $r$, that is, $A=\{1,r,r^2,r^3\}$. Prove that the centralizer […]
  • Abelian Group and Direct Product of Its SubgroupsAbelian Group and Direct Product of Its Subgroups Let $G$ be a finite abelian group of order $mn$, where $m$ and $n$ are relatively prime positive integers. Then show that there exists unique subgroups $G_1$ of order $m$ and $G_2$ of order $n$ such that $G\cong G_1 \times G_2$.   Hint. Consider […]

You may also like...

2 Responses

  1. 01/06/2017

    […] order of $P$ is $9$, a square of a prime number, thus $P$ is abelian. (See A group of order the square of a prime is abelian.) Also, the order of the quotient group $G/P$ is $2$, thus $G/P$ is an abelian (cyclic) group. Thus […]

  2. 08/12/2017

    […] these Sylow subgroups are of order $11^2$ and $13^2$, respectively, they are abelian. Since the direct product of abelian groups is abelian, the group $G$ is […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Abelian Group problems and solutions
If the Quotient by the Center is Cyclic, then the Group is Abelian

Let $Z(G)$ be the center of a group $G$. Show that if $G/Z(G)$ is a cyclic group, then $G$ is...

Close