A Linear Transformation is Injective (One-To-One) if and only if the Nullity is Zero

Linear Transformation problems and solutions

Problem 540

Let $U$ and $V$ be vector spaces over a scalar field $\F$.
Let $T: U \to V$ be a linear transformation.

Prove that $T$ is injective (one-to-one) if and only if the nullity of $T$ is zero.

 
LoadingAdd to solve later

Sponsored Links


Definition (Injective, One-to-One Linear Transformation).

A linear transformation is said to be injective or one-to-one if provided that for all $\mathbf{u}_1$ and $\mathbf{u}_1$ in $U$, whenever $T(\mathbf{u}_1)=T(\mathbf{u}_2)$, then we have $\mathbf{u}_1=\mathbf{u}_2$.

Proof.

$(\implies)$: If $T$ is injective, then the nullity is zero.

Suppose that $T$ is injective.
Our objective is to show that the null space $\calN(T)=\{\mathbf{0}_U\}$.

Since $T$ is a linear transformation, it sends the zero vector $\mathbf{0}_U$ of $U$ to the zero vector $\mathbf{0}_V$ of $V$.
In fact, we have
\begin{align*}
T(\mathbf{0}_U)&=T(\mathbf{0}_U-\mathbf{0}_U)\\
&=T(\mathbf{0}_U+(-1)\mathbf{0}_U)\\
&=T(\mathbf{0}_U)+(-1)T(\mathbf{0}_U) &&\text{by linearity of $T$}\\
&=T(\mathbf{0}_U)-T(\mathbf{0}_U)=\mathbf{0}_V.
\end{align*}
Hence $\mathbf{0}_U\in \calN(T)$.

On the other hand, if $\mathbf{u}\in \calN(T)$, then we have
\[T(\mathbf{u})=\mathbf{0}_V=T(\mathbf{0}_U).\] Since $T$ is injective, it yields that $\mathbf{u}=\mathbf{0}_U$.
Therefore we obtain $\calN(T)=\{\mathbf{0}_U\}$, and the nullity of $T$ is zero.
(Recall that the nullity of $T$ is the dimension of $\calN(T)$.)

$(\impliedby)$: If the nullity is zero, then $T$ is injective.

Next, suppose that the nullity of $T$ is zero.
This is equivalent to the condition $\calN(T)=\{\mathbf{0}_U\}$.
Our goal is to show that $T: U \to V$ is injective.

Suppose that $T(\mathbf{u}_1)=T(\mathbf{u}_2)$ for some $\mathbf{u}_1, \mathbf{u}_2\in U$.
Then we have
\begin{align*}
\mathbf{0}_V&=T(\mathbf{u}_1)-T(\mathbf{u}_2)\\
&=T(\mathbf{u}_1)+(-1)T(\mathbf{u}_2)\\
&=T(\mathbf{u}_1+(-1)\mathbf{u}_2) && \text{by linearity of $T$}\\
&=T(\mathbf{u}_1-\mathbf{u}_2)
\end{align*}
It follows that the vector $\mathbf{u}_1-\mathbf{u}_2$ is in the null space $\calN(T)=\{\mathbf{0}_U\}$.
Thus, we have $\mathbf{u}_1-\mathbf{u}_2=\mathbf{0}_U$, or $\mathbf{u}_1=\mathbf{u}_2$.
So the linear transformation $T$ is injective.

Related Question.

Problem.
Let $U$ and $V$ be finite dimensional vector spaces over a scalar field $\F$.
Consider a linear transformation $T:U\to V$.

Prove that if $\dim(U) > \dim(V)$, then $T$ cannot be injective.

The proof of this problem is given in the post ↴
A Linear Transformation $T: U\to V$ cannot be Injective if $\dim(U) > \dim(V)$


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

3 Responses

  1. 08/17/2017

    […] For the proof of this fact, see the post ↴ A Linear Transformation is Injective (One-To-One) if and only if the Nullity is Zero […]

  2. 08/22/2017

    […] to show that the null space of $T$ is trivial: $calN(T)={mathbf{0}}$. (See the post “A Linear Transformation is Injective (One-To-One) if and only if the Nullity is Zero” for a proof of this […]

  3. 10/26/2017

    […] that is, $T(mathbf{x})=mathbf{0}$ implies that $mathbf{x}=mathbf{0}$. (See the post “A Linear Transformation is Injective (One-To-One) if and only if the Nullity is Zero” for the proof of this […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
The Inner Product on $\R^2$ induced by a Positive Definite Matrix and Gram-Schmidt Orthogonalization

Consider the $2\times 2$ real matrix \[A=\begin{bmatrix} 1 & 1\\ 1& 3 \end{bmatrix}.\] (a) Prove that the matrix $A$ is...

Close