A Matrix Having One Positive Eigenvalue and One Negative Eigenvalue

Linear Algebra exam problems and solutions at University of California, Berkeley

Problem 190

Prove that the matrix
\[A=\begin{bmatrix}
1 & 1.00001 & 1 \\
1.00001 &1 &1.00001 \\
1 & 1.00001 & 1
\end{bmatrix}\] has one positive eigenvalue and one negative eigenvalue.

(University of California, Berkeley Qualifying Exam Problem)
 
LoadingAdd to solve later

Sponsored Links

Solution.

Let us put $a=1.00001$. We compute the characteristic polynomial $\det(A-tI)$ of the given matrix $A$ as follows.
We have
\begin{align*}
\det(A-tI)&=\begin{vmatrix}
1-t & a & 1 \\
a &1-t &a \\
1 & a & 1-t
\end{vmatrix}\\
&=(1-t)\begin{vmatrix}
1-t & a\\
a& 1-t
\end{vmatrix}-a\begin{vmatrix}
a & a\\
1& 1-t
\end{vmatrix}+\begin{vmatrix}
a & 1-t\\
1& a
\end{vmatrix}
\end{align*}
by the cofactor expansion corresponding to the first row.

Simplifying this, we obtain
\[\det(A-tI)=-t(t^2-3t+2-2a^2).\]


The eigenvalues of $A$ are roots of this characteristic polynomial.
Hence $0$ is an eigenvalue of $A$. Let $\lambda_1$ and $\lambda_2$ be other two eigenvalues of $A$.

Then we have
\[\det(A-tI)=-t(t-\lambda_1)(t-\lambda_2)=-t(t^2-(\lambda_1+\lambda_2)+\lambda_1 \lambda_2).\] Therefore we have
\[\lambda_1 \lambda_2=2-2a^2.\]

Since $2-2a^2=2(1-a^2)<0$ as $a=1.0001>1$, the product $\lambda_1 \lambda_2$ is negative, and we conclude that one of them is positive and the other is negative.

(Note that if the constant $c$ term of a quadratic polynomial $x^2+bx+c$ is negative, then the roots of the polynomial are real and one is negative and the other is positive.)

In summary, the eigenvalues of the matrix $A$ are $0$ and one positive eigenvalue and one negative eigenvalue.


LoadingAdd to solve later

Sponsored Links

More from my site

  • A Matrix Equation of a Symmetric Matrix and the Limit of its SolutionA Matrix Equation of a Symmetric Matrix and the Limit of its Solution Let $A$ be a real symmetric $n\times n$ matrix with $0$ as a simple eigenvalue (that is, the algebraic multiplicity of the eigenvalue $0$ is $1$), and let us fix a vector $\mathbf{v}\in \R^n$. (a) Prove that for sufficiently small positive real $\epsilon$, the equation […]
  • Prove that the Length $\|A^n\mathbf{v}\|$ is As Small As We Like.Prove that the Length $\|A^n\mathbf{v}\|$ is As Small As We Like. Consider the matrix \[A=\begin{bmatrix} 3/2 & 2\\ -1& -3/2 \end{bmatrix} \in M_{2\times 2}(\R).\] (a) Find the eigenvalues and corresponding eigenvectors of $A$. (b) Show that for $\mathbf{v}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}\in \R^2$, we can choose […]
  • Simple Commutative Relation on MatricesSimple Commutative Relation on Matrices Let $A$ and $B$ are $n \times n$ matrices with real entries. Assume that $A+B$ is invertible. Then show that \[A(A+B)^{-1}B=B(A+B)^{-1}A.\] (University of California, Berkeley Qualifying Exam) Proof. Let $P=A+B$. Then $B=P-A$. Using these, we express the given […]
  • If Column Vectors Form Orthonormal set, is Row Vectors Form Orthonormal Set?If Column Vectors Form Orthonormal set, is Row Vectors Form Orthonormal Set? Suppose that $A$ is a real $n\times n$ matrix. (a) Is it true that $A$ must commute with its transpose? (b) Suppose that the columns of $A$ (considered as vectors) form an orthonormal set. Is it true that the rows of $A$ must also form an orthonormal set? (University of […]
  • Square Root of an Upper Triangular Matrix. How Many Square Roots Exist?Square Root of an Upper Triangular Matrix. How Many Square Roots Exist? Find a square root of the matrix \[A=\begin{bmatrix} 1 & 3 & -3 \\ 0 &4 &5 \\ 0 & 0 & 9 \end{bmatrix}.\] How many square roots does this matrix have? (University of California, Berkeley Qualifying Exam)   Proof. We will find all matrices $B$ such that […]
  • Inequality Regarding Ranks of MatricesInequality Regarding Ranks of Matrices Let $A$ be an $n \times n$ matrix over a field $K$. Prove that \[\rk(A^2)-\rk(A^3)\leq \rk(A)-\rk(A^2),\] where $\rk(B)$ denotes the rank of a matrix $B$. (University of California, Berkeley, Qualifying Exam) Hint. Regard the matrix as a linear transformation $A: […]
  • Find the Rank of the Matrix $A+I$ if Eigenvalues of $A$ are $1, 2, 3, 4, 5$Find the Rank of the Matrix $A+I$ if Eigenvalues of $A$ are $1, 2, 3, 4, 5$ Let $A$ be an $n$ by $n$ matrix with entries in complex numbers $\C$. Its only eigenvalues are $1,2,3,4,5$, possibly with multiplicities. What is the rank of the matrix $A+I_n$, where $I_n$ is the identity $n$ by $n$ matrix. (UCB-University of California, Berkeley, […]
  • Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam)Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam) Let \[\begin{bmatrix} 0 & 0 & 1 \\ 1 &0 &0 \\ 0 & 1 & 0 \end{bmatrix}.\] (a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers? (b) Calculate $A^{2009}$. (Princeton University, […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Given All Eigenvalues and Eigenspaces, Compute a Matrix Product

Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces \[E_2=\Span\left \{\quad \begin{bmatrix} 1 \\...

Close