# A Module is Irreducible if and only if It is a Cyclic Module With Any Nonzero Element as Generator

## Problem 434

Let $R$ be a ring with $1$.
A nonzero $R$-module $M$ is called irreducible if $0$ and $M$ are the only submodules of $M$.
(It is also called a simple module.)

(a) Prove that a nonzero $R$-module $M$ is irreducible if and only if $M$ is a cyclic module with any nonzero element as its generator.

(b) Determine all the irreducible $\Z$-modules.

## Proof.

### (a) Prove that a nonzero $R$-module $M$ is irreducible if and only if $M$ is a cyclic module with any nonzero element as its generator.

$(\implies)$ Suppose that $M$ is an irreducible module.
Let $a\in M$ be any nonzero element and consider the submodule $(a)$ generated by the element $a$.

Since $a$ is a nonzero element, the submodule $(a)$ is non-zero. Since $M$ is irreducible, this yields that
$M=(a).$ Hence $M$ is a cyclic module generated by $a$. Since $a$ is any nonzero element, we conclude that the module $M$ is a cyclic module with any nonzero element as its generator.

$(\impliedby)$ Suppose that $M$ is a cyclic module with any nonzero element as its generator.
Let $N$ be a nonzero submodule of $M$. Since $N$ is non-zero, we can pick a nonzero element $a\in N$. By assumption, the non-zero element $a$ generates the module $M$.

Thus we have
$(a) \subset N \subset M=(a).$ It follows that $N=M$, and hence $M$ is irreducible.

### (b) Determine all the irreducible $\Z$-modules.

By the result of part (a), any irreducible $\Z$-module is generated by any nonzero element.
We first claim that $M$ cannot contain an element of infinite order. Suppose on the contrary $a\in M$ has infinite order.

Then since $M$ is irreducible, we have
$M=(a)\cong \Z.$ Since $\Z$-module $\Z$ has, for example, a proper submodule $2\Z$, it is not irreducible. Thus, the module $M$ is not irreducible, a contradiction.

It follows that any irreducible $\Z$-module is a finite cyclic group.
(Recall that any $\Z$-module is an abelian group.)
We claim that its order must be a prime number.

Suppose that $M=\Zmod{n}$, where $n=ml$ with $m,l > 1$.
Then
$(\,\bar{l}\,)=\{l+n\Z, 2l+n\Z, \dots, (m-1)l+n\Z\}$ is a proper submodule of $M$, and it is a contradiction.
Thus, $n$ must be prime.

We conclude that any irreducible $\Z$-module is a cyclic group of prime order.

## Related Question.

Here is another problem about irreducible modules.

Problem. Let $R$ be a commutative ring with $1$ and let $M$ be an $R$-module.
Prove that the $R$-module $M$ is irreducible if and only if $M$ is isomorphic to $R/I$, where $I$ is a maximal ideal of $R$, as an $R$-module.

For a proof of this problem, see the post “A Module $M$ is Irreducible if and only if $M$ is isomorphic to $R/I$ for a Maximal Ideal $I$.“.

### More from my site

• A Module $M$ is Irreducible if and only if $M$ is isomorphic to $R/I$ for a Maximal Ideal $I$. Let $R$ be a commutative ring with $1$ and let $M$ be an $R$-module. Prove that the $R$-module $M$ is irreducible if and only if $M$ is isomorphic to $R/I$, where $I$ is a maximal ideal of $R$, as an $R$-module.     Definition (Irreducible module). An […]
• Can $\Z$-Module Structure of Abelian Group Extend to $\Q$-Module Structure? If $M$ is a finite abelian group, then $M$ is naturally a $\Z$-module. Can this action be extended to make $M$ into a $\Q$-module?   Proof. In general, we cannot extend a $\Z$-module into a $\Q$-module. We give a counterexample. Let $M=\Zmod{2}$ be the order […]
• Torsion Submodule, Integral Domain, and Zero Divisors Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$. The set of torsion elements is denoted $\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.$ (a) Prove that if $R$ is an […]
• Submodule Consists of Elements Annihilated by Some Power of an Ideal Let $R$ be a ring with $1$ and let $M$ be an $R$-module. Let $I$ be an ideal of $R$. Let $M'$ be the subset of elements $a$ of $M$ that are annihilated by some power $I^k$ of the ideal $I$, where the power $k$ may depend on $a$. Prove that $M'$ is a submodule of […]
• Annihilator of a Submodule is a 2-Sided Ideal of a Ring Let $R$ be a ring with $1$ and let $M$ be a left $R$-module. Let $S$ be a subset of $M$. The annihilator of $S$ in $R$ is the subset of the ring $R$ defined to be $\Ann_R(S)=\{ r\in R\mid rx=0 \text{ for all } x\in S\}.$ (If $rx=0, r\in R, x\in S$, then we say $r$ annihilates […]
• Ascending Chain of Submodules and Union of its Submodules Let $R$ be a ring with $1$. Let $M$ be an $R$-module. Consider an ascending chain $N_1 \subset N_2 \subset \cdots$ of submodules of $M$. Prove that the union $\cup_{i=1}^{\infty} N_i$ is a submodule of $M$.   Proof. To simplify the notation, let us […]
• Short Exact Sequence and Finitely Generated Modules Let $R$ be a ring with $1$. Let $0\to M\xrightarrow{f} M' \xrightarrow{g} M^{\prime\prime} \to 0 \tag{*}$ be an exact sequence of left $R$-modules. Prove that if $M$ and $M^{\prime\prime}$ are finitely generated, then $M'$ is also finitely generated.   […]
• Linearly Dependent Module Elements / Module Homomorphism and Linearly Independency (a) Let $R$ be a commutative ring. If we regard $R$ as a left $R$-module, then prove that any two distinct elements of the module $R$ are linearly dependent. (b) Let $f: M\to M'$ be a left $R$-module homomorphism. Let $\{x_1, \dots, x_n\}$ be a subset in $M$. Prove that if the set […]

### 1 Response

1. 06/10/2017

[…] the post “A module is irreducible if and only if it is a cyclic module with any nonzero element as generator” for a […]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

##### Finitely Generated Torsion Module Over an Integral Domain Has a Nonzero Annihilator

(a) Let $R$ be an integral domain and let $M$ be a finitely generated torsion $R$-module. Prove that the module...

Close