# Princeton-university-eye-catch

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Linear Dependent/Independent Vectors of Polynomials Let $p_1(x), p_2(x), p_3(x), p_4(x)$ be (real) polynomials of degree at most $3$. Which (if any) of the following two conditions is sufficient for the conclusion that these polynomials are linearly dependent? (a) At $1$ each of the polynomials has the value $0$. Namely $p_i(1)=0$ […]
- Find a Basis of the Subspace Spanned by Four Polynomials of Degree 3 or Less Let $\calP_3$ be the vector space of all polynomials of degree $3$ or less. Let \[S=\{p_1(x), p_2(x), p_3(x), p_4(x)\},\] where \begin{align*} p_1(x)&=1+3x+2x^2-x^3 & p_2(x)&=x+x^3\\ p_3(x)&=x+x^2-x^3 & p_4(x)&=3+8x+8x^3. \end{align*} (a) […]
- A Subgroup of Index a Prime $p$ of a Group of Order $p^n$ is Normal Let $G$ be a finite group of order $p^n$, where $p$ is a prime number and $n$ is a positive integer. Suppose that $H$ is a subgroup of $G$ with index $[G:P]=p$. Then prove that $H$ is a normal subgroup of $G$. (Michigan State University, Abstract Algebra Qualifying […]
- If the Quotient by the Center is Cyclic, then the Group is Abelian Let $Z(G)$ be the center of a group $G$. Show that if $G/Z(G)$ is a cyclic group, then $G$ is abelian. Steps. Write $G/Z(G)=\langle \bar{g} \rangle$ for some $g \in G$. Any element $x\in G$ can be written as $x=g^a z$ for some $z \in Z(G)$ and $a \in \Z$. Using […]
- Nilpotent Matrix and Eigenvalues of the Matrix An $n\times n$ matrix $A$ is called nilpotent if $A^k=O$, where $O$ is the $n\times n$ zero matrix. Prove the followings. (a) The matrix $A$ is nilpotent if and only if all the eigenvalues of $A$ is zero. (b) The matrix $A$ is nilpotent if and only if […]
- If Two Ideals Are Comaximal in a Commutative Ring, then Their Powers Are Comaximal Ideals Let $R$ be a commutative ring and let $I_1$ and $I_2$ be comaximal ideals. That is, we have \[I_1+I_2=R.\] Then show that for any positive integers $m$ and $n$, the ideals $I_1^m$ and $I_2^n$ are comaximal. > Proof. Since $I_1+I_2=R$, there exists $a \in I_1$ […]
- Every Diagonalizable Nilpotent Matrix is the Zero Matrix Prove that if $A$ is a diagonalizable nilpotent matrix, then $A$ is the zero matrix $O$. Definition (Nilpotent Matrix) A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$. Proof. Main Part Since $A$ is […]
- In a Field of Positive Characteristic, $A^p=I$ Does Not Imply that $A$ is Diagonalizable. Show that the matrix $A=\begin{bmatrix} 1 & \alpha\\ 0& 1 \end{bmatrix}$, where $\alpha$ is an element of a field $F$ of characteristic $p>0$ satisfies $A^p=I$ and the matrix is not diagonalizable over $F$ if $\alpha \neq 0$. Comment. Remark that if $A$ is a square […]