# Michigan-State-University-Abstract-Algebra-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Subgroup of Finite Index Contains a Normal Subgroup of Finite Index Let $G$ be a group and let $H$ be a subgroup of finite index. Then show that there exists a normal subgroup $N$ of $G$ such that $N$ is of finite index in $G$ and $N\subset H$. Proof. The group $G$ acts on the set of left cosets $G/H$ by left multiplication. Hence […]
- Centralizer, Normalizer, and Center of the Dihedral Group $D_{8}$ Let $D_8$ be the dihedral group of order $8$. Using the generators and relations, we have \[D_{8}=\langle r,s \mid r^4=s^2=1, sr=r^{-1}s\rangle.\] (a) Let $A$ be the subgroup of $D_8$ generated by $r$, that is, $A=\{1,r,r^2,r^3\}$. Prove that the centralizer […]
- Linearly Dependent if and only if a Vector Can be Written as a Linear Combination of Remaining Vectors Let $V$ be a vector space over a scalar field $K$. Let $S=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be the set of vectors in $V$, where $n \geq 2$. Then prove that the set $S$ is linearly dependent if and only if at least one of the vectors in $S$ can be written as […]
- Linearly Dependent Module Elements / Module Homomorphism and Linearly Independency (a) Let $R$ be a commutative ring. If we regard $R$ as a left $R$-module, then prove that any two distinct elements of the module $R$ are linearly dependent. (b) Let $f: M\to M'$ be a left $R$-module homomorphism. Let $\{x_1, \dots, x_n\}$ be a subset in $M$. Prove that if the set […]
- If Two Vectors Satisfy $A\mathbf{x}=0$ then Find Another Solution Suppose that the vectors \[\mathbf{v}_1=\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \mathbf{v}_2=\begin{bmatrix} -4 \\ 0 \\ -3 \\ -2 \\ 1 \end{bmatrix}\] are a basis vectors for the null space of a $4\times 5$ […]
- The Quotient Ring $\Z[i]/I$ is Finite for a Nonzero Ideal of the Ring of Gaussian Integers Let $I$ be a nonzero ideal of the ring of Gaussian integers $\Z[i]$. Prove that the quotient ring $\Z[i]/I$ is finite. Proof. Recall that the ring of Gaussian integers is a Euclidean Domain with respect to the norm \[N(a+bi)=a^2+b^2\] for $a+bi\in \Z[i]$. In particular, […]
- Express a Vector as a Linear Combination of Given Three Vectors Let \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \mathbf{b}=\begin{bmatrix} 2 \\ 13 \\ 6 […]
- Nilpotent Ideal and Surjective Module Homomorphisms Let $R$ be a commutative ring and let $I$ be a nilpotent ideal of $R$. Let $M$ and $N$ be $R$-modules and let $\phi:M\to N$ be an $R$-module homomorphism. Prove that if the induced homomorphism $\bar{\phi}: M/IM \to N/IN$ is surjective, then $\phi$ is surjective. […]