# Michigan-State-University-Abstract-Algebra-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Find Values of $a, b, c$ such that the Given Matrix is Diagonalizable For which values of constants $a, b$ and $c$ is the matrix \[A=\begin{bmatrix} 7 & a & b \\ 0 &2 &c \\ 0 & 0 & 3 \end{bmatrix}\] diagonalizable? (The Ohio State University, Linear Algebra Final Exam Problem) Solution. Note that the […]
- Powers of a Matrix Cannot be a Basis of the Vector Space of Matrices Let $n>1$ be a positive integer. Let $V=M_{n\times n}(\C)$ be the vector space over the complex numbers $\C$ consisting of all complex $n\times n$ matrices. The dimension of $V$ is $n^2$. Let $A \in V$ and consider the set \[S_A=\{I=A^0, A, A^2, \dots, A^{n^2-1}\}\] of $n^2$ […]
- Linear Algebra Midterm 1 at the Ohio State University (2/3) The following problems are Midterm 1 problems of Linear Algebra (Math 2568) at the Ohio State University in Autumn 2017. There were 9 problems that covered Chapter 1 of our textbook (Johnson, Riess, Arnold). The time limit was 55 minutes. This post is Part 2 and contains […]
- Find All Values of $x$ so that a Matrix is Singular Let \[A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular. Hint. Use the fact that a matrix is singular if and only […]
- Find the Rank of a Matrix with a Parameter Find the rank of the following real matrix. \[ \begin{bmatrix} a & 1 & 2 \\ 1 &1 &1 \\ -1 & 1 & 1-a \end{bmatrix},\] where $a$ is a real number. (Kyoto University, Linear Algebra Exam) Solution. The rank is the number of nonzero rows of a […]
- A Line is a Subspace if and only if its $y$-Intercept is Zero Let $\R^2$ be the $x$-$y$-plane. Then $\R^2$ is a vector space. A line $\ell \subset \mathbb{R}^2$ with slope $m$ and $y$-intercept $b$ is defined by \[ \ell = \{ (x, y) \in \mathbb{R}^2 \mid y = mx + b \} .\] Prove that $\ell$ is a subspace of $\mathbb{R}^2$ if and only if $b = […]
- If Column Vectors Form Orthonormal set, is Row Vectors Form Orthonormal Set? Suppose that $A$ is a real $n\times n$ matrix. (a) Is it true that $A$ must commute with its transpose? (b) Suppose that the columns of $A$ (considered as vectors) form an orthonormal set. Is it true that the rows of $A$ must also form an orthonormal set? (University of […]
- Every Group of Order 20449 is an Abelian Group Prove that every group of order $20449$ is an abelian group. Outline of the Proof Note that $20449=11^2 \cdot 13^2$. Let $G$ be a group of order $20449$. We prove by Sylow's theorem that there are a unique Sylow $11$-subgroup and a unique Sylow $13$-subgroup of […]