Abelian Group and Direct Product of Its Subgroups

Abelian Group problems and solutions

Problem 95

Let $G$ be a finite abelian group of order $mn$, where $m$ and $n$ are relatively prime positive integers.

Then show that there exists unique subgroups $G_1$ of order $m$ and $G_2$ of order $n$ such that $G\cong G_1 \times G_2$.

 
LoadingAdd to solve later

Sponsored Links


Hint.

Consider subgroups
\[G_1=\{ x\in G \mid x^m=1 \}\] and
\[G_2=\{ x\in G \mid x^n=1 \}.\]

Proof.

We first show that the existence of such subgroups of $G$.
Let
\[G_1=\{ x\in G \mid x^m=1 \}\] and
\[G_2=\{ x\in G \mid x^n=1 \}.\] We claim that $G=G_1 \times G_2$.
To show this, we prove the following conditions.

(a) $G_1$ and $G_2$ are normal in $G$,
(b) $G_1\cap G_2=e$, where $e$ is the identity element of $G$, and
(c) $G=G_1G_2$

Conditions (a) and (b) imply that $G_1G_2 \cong G_1 \times G_2$ and condition (c) concludes that $G\cong G_1 \times G_2$.


Condition (a) is clear since $G$ is an abelian group.


To show condition (b), take $x \in G_1 \cap G_2$, thus $x^m=x^n=1$.
Since $m$ and $n$ are relatively prime, there exist integers $a, b$ such that $am+bn=1$.

Then we have
\[x=x^1=x^{am+bn}=x^{am}x^{bn}=(x^m)^a (x^n)^b=e^a e^b=e.\] Therefore we proved $G_1 \cap G_2=e$, hence condition (b) holds as well and we conclude that $G_1G_2=G_1\times G_2$.


Next we prove condition (c).
The inclusion $G_1G_2 \subset G$ is clear. For any $x\in G$, we can write
\[ x=x^{am+bn}=x^{bn}x^{am}.\] Then $x^{bn}$ is in $G_1$ since
\[(x^{bn})^m=(x^{mn})^b=e^b=e\] where the second equality follows since the order of $G$ is $mn$.

Similarly, $x^{an}$ is in $G_2$ since
\[(x^{an})^m= (x^{mn})^a=e^a=e.\] Hence $x=x^{bn}x^{am}\in G_1 G_2$, and we have $G=G_1 G_2$.
We checked all the conditions and hence $G \cong G_1 \times G_2$. From this it follows that the order of $G_1$ is $m$ and the order of $G_2$ is $n$.


Now we show the uniqueness of such subgroups.
If $G_1’$ is a subgroup of $G$ of order $m$, then by the definition of $G_1$, we have
\[G_1’\subset G_1.\] Since both groups are of order $m$, they must be equal. Thus $G_1$ is the unique subgroup of order $m$. Similarly for $G_2$. This completes the proof.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Non-Abelian Group of Order $pq$ and its Sylow SubgroupsNon-Abelian Group of Order $pq$ and its Sylow Subgroups Let $G$ be a non-abelian group of order $pq$, where $p, q$ are prime numbers satisfying $q \equiv 1 \pmod p$. Prove that a $q$-Sylow subgroup of $G$ is normal and the number of $p$-Sylow subgroups are $q$.   Hint. Use Sylow's theorem. To review Sylow's theorem, check […]
  • Group of Order $pq$ Has a Normal Sylow Subgroup and SolvableGroup of Order $pq$ Has a Normal Sylow Subgroup and Solvable Let $p, q$ be prime numbers such that $p>q$. If a group $G$ has order $pq$, then show the followings. (a) The group $G$ has a normal Sylow $p$-subgroup. (b) The group $G$ is solvable.   Definition/Hint For (a), apply Sylow's theorem. To review Sylow's theorem, […]
  • Surjective Group Homomorphism to $\Z$ and Direct Product of Abelian GroupsSurjective Group Homomorphism to $\Z$ and Direct Product of Abelian Groups Let $G$ be an abelian group and let $f: G\to \Z$ be a surjective group homomorphism. Prove that we have an isomorphism of groups: \[G \cong \ker(f)\times \Z.\]   Proof. Since $f:G\to \Z$ is surjective, there exists an element $a\in G$ such […]
  • Group of Order 18 is SolvableGroup of Order 18 is Solvable Let $G$ be a finite group of order $18$. Show that the group $G$ is solvable.   Definition Recall that a group $G$ is said to be solvable if $G$ has a subnormal series \[\{e\}=G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n=G\] such […]
  • A Simple Abelian Group if and only if the Order is a Prime NumberA Simple Abelian Group if and only if the Order is a Prime Number Let $G$ be a group. (Do not assume that $G$ is a finite group.) Prove that $G$ is a simple abelian group if and only if the order of $G$ is a prime number.   Definition. A group $G$ is called simple if $G$ is a nontrivial group and the only normal subgroups of $G$ is […]
  • Abelian Normal Subgroup, Intersection, and Product of GroupsAbelian Normal Subgroup, Intersection, and Product of Groups Let $G$ be a group and let $A$ be an abelian subgroup of $G$ with $A \triangleleft G$. (That is, $A$ is a normal subgroup of $G$.) If $B$ is any subgroup of $G$, then show that \[A \cap B \triangleleft AB.\]   Proof. First of all, since $A \triangleleft G$, the […]
  • Normal Subgroups, Isomorphic Quotients, But Not IsomorphicNormal Subgroups, Isomorphic Quotients, But Not Isomorphic Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$. Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.   Proof. We give a […]
  • Normal Subgroup Whose Order is Relatively Prime to Its IndexNormal Subgroup Whose Order is Relatively Prime to Its Index Let $G$ be a finite group and let $N$ be a normal subgroup of $G$. Suppose that the order $n$ of $N$ is relatively prime to the index $|G:N|=m$. (a) Prove that $N=\{a\in G \mid a^n=e\}$. (b) Prove that $N=\{b^m \mid b\in G\}$.   Proof. Note that as $n$ and […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Normalizer and Centralizer of a Subgroup of Order 2

Let $H$ be a subgroup of order $2$. Let $N_G(H)$ be the normalizer of $H$ in $G$ and $C_G(H)$ be...

Close