All Linear Transformations that Take the Line $y=x$ to the Line $y=-x$

Linear Transformation problems and solutions

Problem 454

Determine all linear transformations of the $2$-dimensional $x$-$y$ plane $\R^2$ that take the line $y=x$ to the line $y=-x$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

Let $T:\R^2 \to \R^2$ be a linear transformation that maps the line $y=x$ to the line $y=-x$.
Note that the linear transformation $T$ is completely determined if the values of $T$ on basis vectors of the vector space $\R^2$ are known.

Let
\[B=\left\{\, \begin{bmatrix}
1 \\
0
\end{bmatrix}, \begin{bmatrix}
1 \\
1
\end{bmatrix} \,\right\}\] be a basis of $\R^2$.


The reason of this choice is as follows.
Since we know that $T$ takes the line $y=x$ to the line $y=-x$, the vector $\begin{bmatrix}
1 \\
1
\end{bmatrix}$ is mapped into some point on the line $y=-x$.
This is how we chose the vector $\begin{bmatrix}
1 \\
1
\end{bmatrix}$. The other basis vector could be any vector that is not a multiple of $\begin{bmatrix}
1 \\
1
\end{bmatrix}$, and we just chose the simple vector $\begin{bmatrix}
1 \\
0
\end{bmatrix}$.


Let
\[T\left(\, \begin{bmatrix}
1 \\
0
\end{bmatrix} \,\right)=\begin{bmatrix}
a \\
b
\end{bmatrix}\] for some $a,b \in \R$.

Since we know that the vector $T\left(\, \begin{bmatrix}
1 \\
1
\end{bmatrix} \,\right)$ is on the line $y=-x$, let
\[T\left(\, \begin{bmatrix}
1 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
c \\
-c
\end{bmatrix}\] for some $c\in \R$.


We now find a formula for this linear transformation $T$.
Let $\begin{bmatrix}
x \\
y
\end{bmatrix}$ be an arbitrary vector in the plane $\R^2$.

We express this vector as a linear combination of basis vectors:
\[\begin{bmatrix}
x \\
y
\end{bmatrix}=(x-y)\begin{bmatrix}
1 \\
0
\end{bmatrix}+y\begin{bmatrix}
1 \\
1
\end{bmatrix}.\]

Then we have
\begin{align*}
&T\left(\, \begin{bmatrix}
x \\
y
\end{bmatrix} \,\right)\\
&=T\left(\, (x-y)\begin{bmatrix}
1 \\
0
\end{bmatrix}+y\begin{bmatrix}
1 \\
1
\end{bmatrix} \,\right)\\
&=(x-y)T\left(\, \begin{bmatrix}
1 \\
0
\end{bmatrix}\,\right)+yT\left(\, \begin{bmatrix}
1 \\
1
\end{bmatrix} \,\right) && \text{since $T$ is a linear transformation}\\
&=(x-y)\begin{bmatrix}
a \\
b
\end{bmatrix}+y\begin{bmatrix}
c \\
-c
\end{bmatrix}\\
&=\begin{bmatrix}
ax+(c-a)y \\
bx-(c+b)y
\end{bmatrix}.
\end{align*}


We conclude that any linear transformation $T:\R^2\to \R^2$ that takes the line $y=x$ to the line $y=-x$ is of the form

\[T\left(\, \begin{bmatrix}
x \\
y
\end{bmatrix} \,\right)=\begin{bmatrix}
ax+(c-a)y \\
bx-(c+b)y
\end{bmatrix}\]

for some $a, b, c\in \R$.

Remark.

Remark that if $c=0$, then all the points on the line $y=x$ are mapped into the origin, which is on the line $y=-x$.
If we want to avoid this degenerate case, we need to assume that $c\neq 0$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Transformation problems and solutions
Differentiating Linear Transformation is Nilpotent

Let $P_n$ be the vector space of all polynomials with real coefficients of degree $n$ or less. Consider the differentiation...

Close