An Example of a Matrix that Cannot Be a Commutator

Inverse Matrices Problems and Solutions

Problem 565

Let $I$ be the $2\times 2$ identity matrix.
Then prove that $-I$ cannot be a commutator $[A, B]:=ABA^{-1}B^{-1}$ for any $2\times 2$ matrices $A$ and $B$ with determinant $1$.

 
LoadingAdd to solve later

Sponsored Links

Proof.

Assume that $[A, B]=-I$. Then $ABA^{-1}B^{-1}=-I$ implies
\[ABA^{-1}=-B. \tag{*}\] Taking the trace, we have
\[-\tr(B)=\tr(-B)=\tr(ABA^{-1})=tr(BAA^{-1})=\tr(B),\] hence the trace $\tr(B)=0$.
Thus, the characteristic polynomial of $B$ is
\[x^2-\tr(B)x+\det(B)=x^2+1.\] Hence the eigenvalues of $B$ are $\pm i$.


Note that the matrix $\begin{bmatrix}
0 & -1\\
1& 0
\end{bmatrix}$ has also eigenvalues $\pm i$.
Thus this matrix is similar to the matrix $B$ as both matrices are similar to the diagonal matrix $\begin{bmatrix}
i & 0\\
0& -i
\end{bmatrix}$.
Let $P$ be a nonsingular matrix such that
\[B’:=P^{-1}BP=\begin{bmatrix}
0 & -1\\
1& 0
\end{bmatrix}.\] Let $A’=P^{-1}AP$.


The relation (*) is equivalent to $AB=-BA$.
Using this we have
\begin{align*}
A’B’&=(P^{-1}AP)(P^{-1}BP)=P^{-1}(AB)P\\
&=P^{-1}(-BA)P=-(P^{-1}BP)(P^{-1}AP)=-B’A’.
\end{align*}

Let $A’=\begin{bmatrix}
a & b\\
c& d
\end{bmatrix}$.
Then $A’B’=-B’A’$ gives
\begin{align*}
\begin{bmatrix}
a & b\\
c& d
\end{bmatrix}
\begin{bmatrix}
0 & -1\\
1& 0
\end{bmatrix}
=-\begin{bmatrix}
0 & -1\\
1& 0
\end{bmatrix}\begin{bmatrix}
a & b\\
c& d
\end{bmatrix}\\[6pt] \Leftrightarrow
\begin{bmatrix}
b & -a\\
d& -c
\end{bmatrix}=\begin{bmatrix}
c & d\\
-a& -b
\end{bmatrix}.
\end{align*}
Hence we obtain $d=-a$ and $c=b$.


Then
\begin{align*}
1=\det(A)=\det(PA’P^{-1})=\det(A’)=\begin{vmatrix}
a & b\\
b& -a
\end{vmatrix}=-a^2-b^2,
\end{align*}
which is impossible.
Therefore, the matrix $-I$ cannot be written as a commutator $[A, B]$ for any $2\times 2$ matrices $A, B$ with determinant $1$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
7 Problems on Skew-Symmetric Matrices

Let $A$ and $B$ be $n\times n$ skew-symmetric matrices. Namely $A^{\trans}=-A$ and $B^{\trans}=-B$. (a) Prove that $A+B$ is skew-symmetric. (b)...

Close