An Example of a Real Matrix that Does Not Have Real Eigenvalues

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 596

Let
\[A=\begin{bmatrix}
a & b\\
-b& a
\end{bmatrix}\] be a $2\times 2$ matrix, where $a, b$ are real numbers.
Suppose that $b\neq 0$.

Prove that the matrix $A$ does not have real eigenvalues.

 
LoadingAdd to solve later

Sponsored Links

Proof.

Let $\lambda$ be an arbitrary eigenvalue of $A$.
Then the matrix $A-\lambda I$ is singular, where $I$ is the $2\times 2$ identity matrix.
This is equivalent to having $\det(A-\lambda I)=0$.

We compute the determinant as follows.
We have
\begin{align*}
\det(A-\lambda I)&=\begin{vmatrix}
a-\lambda & b\\
-b& a-\lambda
\end{vmatrix}\\[6pt] &=(a-\lambda)^2-b(-b)\\
&=a^2-2a\lambda+\lambda^2+b^2\\
&=\lambda^2-2a\lambda+a^2+b^2.
\end{align*}

We solve the equation $\lambda^2-2a\lambda+a^2+b^2=0$ by the quadratic formula and obtain
\begin{align*}
\lambda &=\frac{2a\pm\sqrt{4a^2-4(a^2+b^2)}}{2}=\frac{2a\pm\sqrt{-4b^2}}{2}\\[6pt] &=a\pm |b|i.
\end{align*}

Since $b\neq 0$ by assumption, the eigenvalue $\lambda=a\pm|b|i$ is not a real number.
As $\lambda$ is an arbitrary eigenvalue of $A$, we conclude that all eigenvalues of $A$ are not real numbers.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Common Eigenvector of Two Matrices and Determinant of CommutatorCommon Eigenvector of Two Matrices and Determinant of Commutator Let $A$ and $B$ be $n\times n$ matrices. Suppose that these matrices have a common eigenvector $\mathbf{x}$. Show that $\det(AB-BA)=0$. Steps. Write down eigenequations of $A$ and $B$ with the eigenvector $\mathbf{x}$. Show that AB-BA is singular. A matrix is […]
  • Complex Conjugates of Eigenvalues of a Real Matrix are EigenvaluesComplex Conjugates of Eigenvalues of a Real Matrix are Eigenvalues Let $A$ be an $n\times n$ real matrix. Prove that if $\lambda$ is an eigenvalue of $A$, then its complex conjugate $\bar{\lambda}$ is also an eigenvalue of $A$.   We give two proofs. Proof 1. Let $\mathbf{x}$ be an eigenvector corresponding to the […]
  • Use the Cayley-Hamilton Theorem to Compute the Power $A^{100}$Use the Cayley-Hamilton Theorem to Compute the Power $A^{100}$ Let $A$ be a $3\times 3$ real orthogonal matrix with $\det(A)=1$. (a) If $\frac{-1+\sqrt{3}i}{2}$ is one of the eigenvalues of $A$, then find the all the eigenvalues of $A$. (b) Let \[A^{100}=aA^2+bA+cI,\] where $I$ is the $3\times 3$ identity matrix. Using the […]
  • Eigenvalues of Similarity TransformationsEigenvalues of Similarity Transformations Let $A$ be an $n\times n$ complex matrix. Let $S$ be an invertible matrix. (a) If $SAS^{-1}=\lambda A$ for some complex number $\lambda$, then prove that either $\lambda^n=1$ or $A$ is a singular matrix. (b) If $n$ is odd and $SAS^{-1}=-A$, then prove that $0$ is an […]
  • There is at Least One Real Eigenvalue of an Odd Real MatrixThere is at Least One Real Eigenvalue of an Odd Real Matrix Let $n$ be an odd integer and let $A$ be an $n\times n$ real matrix. Prove that the matrix $A$ has at least one real eigenvalue.   We give two proofs. Proof 1. Let $p(t)=\det(A-tI)$ be the characteristic polynomial of the matrix $A$. It is a degree $n$ […]
  • Find Eigenvalues, Eigenvectors, and Diagonalize the 2 by 2 MatrixFind Eigenvalues, Eigenvectors, and Diagonalize the 2 by 2 Matrix Consider the matrix $A=\begin{bmatrix} a & -b\\ b& a \end{bmatrix}$, where $a$ and $b$ are real numbers and $b\neq 0$. (a) Find all eigenvalues of $A$. (b) For each eigenvalue of $A$, determine the eigenspace $E_{\lambda}$. (c) Diagonalize the matrix $A$ by finding a […]
  • A Diagonalizable Matrix which is Not Diagonalized by a Real Nonsingular MatrixA Diagonalizable Matrix which is Not Diagonalized by a Real Nonsingular Matrix Prove that the matrix \[A=\begin{bmatrix} 0 & 1\\ -1& 0 \end{bmatrix}\] is diagonalizable. Prove, however, that $A$ cannot be diagonalized by a real nonsingular matrix. That is, there is no real nonsingular matrix $S$ such that $S^{-1}AS$ is a diagonal […]
  • Find All Values of $x$ so that a Matrix is SingularFind All Values of $x$ so that a Matrix is Singular Let \[A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular.   Hint. Use the fact that a matrix is singular if and only […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
The Intersection of Two Subspaces is also a Subspace

Let $U$ and $V$ be subspaces of the $n$-dimensional vector space $\R^n$. Prove that the intersection $U\cap V$ is also...

Close