An Orthogonal Transformation from $\R^n$ to $\R^n$ is an Isomorphism

Linear Transformation problems and solutions

Problem 592

Let $\R^n$ be an inner product space with inner product $\langle \mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\trans}\mathbf{y}$ for $\mathbf{x}, \mathbf{y}\in \R^n$.

A linear transformation $T:\R^n \to \R^n$ is called orthogonal transformation if for all $\mathbf{x}, \mathbf{y}\in \R^n$, it satisfies
\[\langle T(\mathbf{x}), T(\mathbf{y})\rangle=\langle\mathbf{x}, \mathbf{y} \rangle.\]

Prove that if $T:\R^n\to \R^n$ is an orthogonal transformation, then $T$ is an isomorphism.

 
LoadingAdd to solve later

Sponsored Links


We give two proofs.
The second one uses a fact about the injectivity of linear transformations.

Proof 1.

As $T$ is a linear transformation from $\R^n$ to itself, it suffices to show that $T$ is an injective linear transformation.

Suppose that $T(\mathbf{x})=T(\mathbf{y})$ for $\mathbf{x}, \mathbf{y}\in \R^n$.
We show that $\mathbf{x}=\mathbf{y}$.

We have
\begin{align*}
&\|\mathbf{x}-\mathbf{y}\|^2\\
&=(\mathbf{x}-\mathbf{y})^{\trans}(\mathbf{x}-\mathbf{y})\\
&=(\mathbf{x}^{\trans}-\mathbf{y}^{\trans})(\mathbf{x}-\mathbf{y})\\
&=\mathbf{x}^{\trans}\mathbf{x}-\mathbf{x}^{\trans}\mathbf{y}-\mathbf{y}^{\trans}\mathbf{x}+\mathbf{y}^{\trans}\mathbf{y}\\
&=\langle\mathbf{x}, \mathbf{x} \rangle-\langle\mathbf{x}, \mathbf{y} \rangle-\langle\mathbf{y}, \mathbf{x} \rangle+\langle\mathbf{y}, \mathbf{y} \rangle\\
&=\langle T(\mathbf{x}), T(\mathbf{x}) \rangle-\langle T(\mathbf{x}), T(\mathbf{y}) \rangle-\langle T(\mathbf{y}), T(\mathbf{x}) \rangle+\langle T(\mathbf{y}), T(\mathbf{y}) \rangle\\
&\text{(since $T$ is an orthogonal transformation)}\\
&=\langle T(\mathbf{x}), T(\mathbf{x}) \rangle-\langle T(\mathbf{x}), T(\mathbf{x}) \rangle-\langle T(\mathbf{x}), T(\mathbf{x}) \rangle+\langle T(\mathbf{x}), T(\mathbf{x}) \rangle\\
&\text{(since $T(\mathbf{x})=T(\mathbf{y})$)}\\
&=0.
\end{align*}
It follows that $\|\mathbf{x}-\mathbf{y}\|=0$ and hence $\mathbf{x}=\mathbf{y}$.
This proves that $T:\R^n\to \R^n$ is injective.

As $T$ is an injective linear transformation from the $n$-dimensional vector space $\R^n$ to itself, it is also surjective, and thus $T$ is an isomorphism.

Proof 2.

Recall that the linear transformation $T$ is injective if and only if the null space $\calN(T)=\{\mathbf{0}\}$, that is, $T(\mathbf{x})=\mathbf{0}$ implies that $\mathbf{x}=\mathbf{0}$.
(See the post “A Linear Transformation is Injective (One-To-One) if and only if the Nullity is Zero” for the proof of this fact.)

We use this fact to show that $T$ is injective.
Suppose that $T(\mathbf{x})=\mathbf{0}$.
Then we have
\begin{align*}
\|\mathbf{x}\|^2&=\langle \mathbf{x}, \mathbf{x}\rangle\\
&=\langle T(\mathbf{x}), T(\mathbf{x})\rangle &&\text{as $T$ is orthogonal}\\
&=\langle \mathbf{0}, \mathbf{0}\rangle=0 &&\text{as $T(\mathbf{x})=\mathbf{0}$}.
\end{align*}

It follows that the length $\|\mathbf{x}\|=0$, and hence $\mathbf{x}=\mathbf{0}$.
This proves that the null space $\calN(T)=\{\mathbf{0}\}$ and $T$ is injective.

As $T$ is an injective linear transformation from $\R^n$ to itself, it is also surjective, and hence $T$ is an isomorphism.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra Problems and Solutions
Orthogonal Nonzero Vectors Are Linearly Independent

Let $S=\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a set of nonzero vectors in $\R^n$. Suppose that $S$ is an orthogonal set....

Close