# normal-subgroup

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- In a Field of Positive Characteristic, $A^p=I$ Does Not Imply that $A$ is Diagonalizable. Show that the matrix $A=\begin{bmatrix} 1 & \alpha\\ 0& 1 \end{bmatrix}$, where $\alpha$ is an element of a field $F$ of characteristic $p>0$ satisfies $A^p=I$ and the matrix is not diagonalizable over $F$ if $\alpha \neq 0$. Comment. Remark that if $A$ is a square […]
- If a Group $G$ Satisfies $abc=cba$ then $G$ is an Abelian Group Let $G$ be a group with identity element $e$. Suppose that for any non identity elements $a, b, c$ of $G$ we have \[abc=cba. \tag{*}\] Then prove that $G$ is an abelian group. Proof. To show that $G$ is an abelian group we need to show that \[ab=ba\] for any […]
- A Matrix Representation of a Linear Transformation and Related Subspaces Let $T:\R^4 \to \R^3$ be a linear transformation defined by \[ T\left (\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \,\right) = \begin{bmatrix} x_1+2x_2+3x_3-x_4 \\ 3x_1+5x_2+8x_3-2x_4 \\ x_1+x_2+2x_3 \end{bmatrix}.\] (a) Find a matrix $A$ such that […]
- Solve the System of Linear Equations and Give the Vector Form for the General Solution Solve the following system of linear equations and give the vector form for the general solution. \begin{align*} x_1 -x_3 -2x_5&=1 \\ x_2+3x_3-x_5 &=2 \\ 2x_1 -2x_3 +x_4 -3x_5 &= 0 \end{align*} (The Ohio State University, linear algebra midterm exam […]
- Basis with Respect to Which the Matrix for Linear Transformation is Diagonal Let $P_1$ be the vector space of all real polynomials of degree $1$ or less. Consider the linear transformation $T: P_1 \to P_1$ defined by \[T(ax+b)=(3a+b)x+a+3,\] for any $ax+b\in P_1$. (a) With respect to the basis $B=\{1, x\}$, find the matrix of the linear transformation […]
- Find Eigenvalues, Eigenvectors, and Diagonalize the 2 by 2 Matrix Consider the matrix $A=\begin{bmatrix} a & -b\\ b& a \end{bmatrix}$, where $a$ and $b$ are real numbers and $b\neq 0$. (a) Find all eigenvalues of $A$. (b) For each eigenvalue of $A$, determine the eigenspace $E_{\lambda}$. (c) Diagonalize the matrix $A$ by finding a […]
- Fundamental Theorem of Finitely Generated Abelian Groups and its application In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem. Problem. Let $G$ be a finite abelian group of order $n$. If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]
- Non-Prime Ideal of Continuous Functions Let $R$ be the ring of all continuous functions on the interval $[0,1]$. Let $I$ be the set of functions $f(x)$ in $R$ such that $f(1/2)=f(1/3)=0$. Show that the set $I$ is an ideal of $R$ but is not a prime ideal. Proof. We first show that $I$ is an ideal of […]