Are Coefficient Matrices of the Systems of Linear Equations Nonsingular?

Nonsingular matrix and singular matrix problems and solutions

Problem 669

(a) Suppose that a $3\times 3$ system of linear equations is inconsistent. Is the coefficient matrix of the system nonsingular?

(b) Suppose that a $3\times 3$ homogeneous system of linear equations has a solution $x_1=0, x_2=-3, x_3=5$. Is the coefficient matrix of the system nonsingular?

(c) Let $A$ be a $4\times 4$ matrix and let
\[\mathbf{v}=\begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix} \text{ and } \mathbf{w}=\begin{bmatrix}
4 \\
3 \\
2 \\
1
\end{bmatrix}.\] Suppose that we have $A\mathbf{v}=A\mathbf{w}$. Is the matrix $A$ nonsingular?

 
LoadingAdd to solve later

Sponsored Links


Hint.

Recall the following fact.

Let $A$ be an $n\times n$ matrix.

Then $A\mathbf{x}=\mathbf{b}$ has a unique solution for every $n\times 1$ column vector $\mathbf{b}$ if and only if $A$ is nonsingular.

Solution.

(a) Suppose that a $3\times 3$ system of linear equations is inconsistent. Is the coefficient matrix of the system nonsingular?

Let $A\mathbf{x}=\mathbf{b}$ be the system, where $A$ is the coefficient matrix and $\mathbf{b}$ is the constant term vector. Because this system is inconsistent, then $A$ is singular. (If $A$ would be nonsingular, then the system has a unique solution.)

(b) Suppose that a $3\times 3$ homogeneous system of linear equations has a solution $x_1=0, x_2=-3, x_3=5$. Is the coefficient matrix of the system nonsingular?

Recall that a homogeneous system of linear equations has always the zero solution. As the system has another solution $x_1=0, x_2=-3, x_3=5$, the system $A\mathbf{x}=\mathbf{0}$ must have infinitely many solutions. Here $A$ is the coefficient matrix.
Thus, the coefficient matrix $A$ is singular. (If $A$ would be nonsingular, the system has only one solution, which must be the zero solution.)

(c) Suppose that we have $A\mathbf{v}=A\mathbf{w}$. Is the matrix $A$ nonsingular?

Because $A\mathbf{v}=A\mathbf{w}$, we have
\[A(\mathbf{v}-\mathbf{w})=A\mathbf{v}-A\mathbf{w}=\mathbf{0}.\] Note that
\[\mathbf{v}-\mathbf{w}=\begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix}-\begin{bmatrix}
4 \\
3 \\
2 \\
1
\end{bmatrix}=\begin{bmatrix}
-3 \\
-1 \\
1 \\
3
\end{bmatrix}\] is a nonzero vector.
This implies that the homogeneous system $A\mathbf{x}=\mathbf{0}$ has infinitely many solutions as we have found a nonzero solution.
Hence, $A$ is singular.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Differential Equations Problems and Solutions
Solving a System of Differential Equation by Finding Eigenvalues and Eigenvectors

Consider the system of differential equations \begin{align*} \frac{\mathrm{d} x_1(t)}{\mathrm{d}t} & = 2 x_1(t) -x_2(t) -x_3(t)\\ \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} & = -x_1(t)+2x_2(t) -x_3(t)\\...

Close