Are These Linear Transformations?

Linear Transformation problems and solutions

Problem 717

Define two functions $T:\R^{2}\to\R^{2}$ and $S:\R^{2}\to\R^{2}$ by
\[
T\left(
\begin{bmatrix}
x \\ y
\end{bmatrix}
\right)
=
\begin{bmatrix}
2x+y \\ 0
\end{bmatrix}
,\;
S\left(
\begin{bmatrix}
x \\ y
\end{bmatrix}
\right)
=
\begin{bmatrix}
x+y \\ xy
\end{bmatrix}
.
\] Determine whether $T$, $S$, and the composite $S\circ T$ are linear transformations.

 
LoadingAdd to solve later

Sponsored Links


Solution.

We will prove that $T$ and $S\circ T$ are linear transformations, but $S$ is not.

$T$ is alinear transformation

To prove that $T$ is a linear transformation, note that for any $\mathbf{x},\mathbf{y}\in\R^{2}$, if we write
\[
\mathbf{x}
=
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}
,\;
\mathbf{y}
=
\begin{bmatrix}
y_{1} \\ y_{2}
\end{bmatrix}
,
\] then we have
\begin{align*}
T\left(\mathbf{x}+\mathbf{y}\right)
&=
T\left(
\begin{bmatrix}
x_{1}+y_{1} \\ x_{2}+y_{2}
\end{bmatrix}
\right)
=
\begin{bmatrix}
2(x_{1}+y_{1})+(x_{2}+y_{2}) \\ 0
\end{bmatrix}
\\
&=
\begin{bmatrix}
2x_{1}+x_{2} \\ 0
\end{bmatrix}
+
\begin{bmatrix}
2y_{1}+y_{2} \\ 0
\end{bmatrix}
=
T(\mathbf{x})+T(\mathbf{y})
.
\end{align*}


Next, for any scalar $r$, we have
\[
T(r\mathbf{x})
=
T\left(r
\begin{bmatrix}
x_{1} \\ x_{2}
\end{bmatrix}
\right)
=
T\left(
\begin{bmatrix}
rx_{1} \\ rx_{2}
\end{bmatrix}
\right)
=
\begin{bmatrix}
2rx_{1}+rx_{2} \\ 0
\end{bmatrix}
=r
\begin{bmatrix}
2x_{1}+x_{2} \\ 0
\end{bmatrix}
=
rT(\mathbf{x})
.
\] Hence $T$ is a linear transformation.

$S$ is not a linear transformation

To prove that $S$ is not a linear transformation, observe that
\[
S\left(
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
\right)
=
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
,
\quad
S\left(
\begin{bmatrix}
0 \\ 1
\end{bmatrix}
\right)
=
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
,
\quad
S\left(
\begin{bmatrix}
1 \\ 1
\end{bmatrix}
\right)
=
\begin{bmatrix}
2 \\ 1
\end{bmatrix}
.
\] Therefore,
\begin{align*}
S\left(
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
+
\begin{bmatrix}
0 \\ 1
\end{bmatrix}
\right)
&=
S\left(
\begin{bmatrix}
1 \\ 1
\end{bmatrix}
\right)
=
\begin{bmatrix}
2 \\ 1
\end{bmatrix}
% \\
% &
\neq
\begin{bmatrix}
2 \\ 0
\end{bmatrix}
=
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
+
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
\\
&=
S\left(
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
\right)
+
S\left(
\begin{bmatrix}
0 \\ 1
\end{bmatrix}
\right)
.
\end{align*}
Thus it is not the case that $S(\mathbf{x}+\mathbf{y})=S(\mathbf{x})+S(\mathbf{y})$ for all $\mathbf{x},\mathbf{y}\in\R^{2}$. It follows that $S$ cannot be a linear transformation.

The composite $S\circ T$ is a lineawr transformation

To prove that $S\circ T$ is linear, note that for any $\mathbf{x}\in\R^{2}$,
\[
S\circ T(\mathbf{x})
=
S\left(
T\left(
\begin{bmatrix}
x \\ y
\end{bmatrix}
\right)\right)
=
S\left(
\begin{bmatrix}
2x+y \\ 0
\end{bmatrix}
\right)
% =
% \begin{bmatrix}
% 2x+y+0 \\ (2x+y)\cdot 0
% \end{bmatrix}
=
\begin{bmatrix}
2x+y \\ 0
\end{bmatrix}
=
T(\mathbf{x})
.
\] Therefore, $S\circ T=T$. Since $T$ is a linear transformation, we can immediately conclude that $S\circ T$ is a linear transformation. Hence $T$ and $S\circ T$ are linear, while $S$ is not.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
Using Gram-Schmidt Orthogonalization, Find an Orthogonal Basis for the Span

Using Gram-Schmidt orthogonalization, find an orthogonal basis for the span of the vectors $\mathbf{w}_{1},\mathbf{w}_{2}\in\R^{3}$ if \[ \mathbf{w}_{1} = \begin{bmatrix} 1...

Close