Are these vectors in the Nullspace of the Matrix?

Vector Space Problems and Solutions

Problem 692

Let $A=\begin{bmatrix}
1 & 0 & 3 & -2 \\
0 &3 & 1 & 1 \\
1 & 3 & 4 & -1
\end{bmatrix}$. For each of the following vectors, determine whether the vector is in the nullspace $\calN(A)$.

(a) $\begin{bmatrix}
-3 \\
0 \\
1 \\
0
\end{bmatrix}$

(b) $\begin{bmatrix}
-4 \\
-1 \\
2 \\
1
\end{bmatrix}$

(c) $\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}$

(d) $\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$

Then, describe the nullspace $\calN(A)$ of the matrix $A$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

Recall that a vector $\mathbf{v}$ is in the nullspace $\calN(A)$ if $A\mathbf{v}=\mathbf{0}$.

(a) $\begin{bmatrix}
-3 \\
0 \\
1 \\
0
\end{bmatrix}$

We compute
\begin{align*}
A\begin{bmatrix}
-3 \\
0 \\
1 \\
0
\end{bmatrix}=\begin{bmatrix}
1 & 0 & 3 & -2 \\
0 &3 & 1 & 1 \\
1 & 3 & 4 & -1
\end{bmatrix}\begin{bmatrix}
-3 \\
0 \\
1 \\
0
\end{bmatrix}=\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}\neq \mathbf{0}.
\end{align*}
Hence, the vector $\begin{bmatrix}
-3 \\
0 \\
1 \\
0
\end{bmatrix}$ is not in $\calN(A)$.

(b) $\begin{bmatrix}
-4 \\
-1 \\
2 \\
1
\end{bmatrix}$

Since we have
\begin{align*}
A\begin{bmatrix}
-4 \\
-1 \\
2 \\
1
\end{bmatrix}=\begin{bmatrix}
1 & 0 & 3 & -2 \\
0 &3 & 1 & 1 \\
1 & 3 & 4 & -1
\end{bmatrix}
\begin{bmatrix}
-4 \\
-1 \\
2 \\
1
\end{bmatrix}
=\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix},
\end{align*}
the vector $\begin{bmatrix}
-4 \\
-1 \\
2 \\
1
\end{bmatrix}$ is in $\calN(A)$.

(c) $\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}$

Since
\[A\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}=\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix},\] we see that $\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}$ is in $\calN(A)$.

(d) $\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$

Note that the size of the matrix $A$ is $3\times 4$. Since $\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$ is an $3$-dimensional vector, the matrix product $A\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$ is not defined. So in particular, $\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$ is not in $\calN(A)$.

Describe the nullspace $\calN(A)$ of the matrix $A$.

Now, let us describe the nullspace
\[\calN(A)=\{\mathbf{x}\in \R^4 \mid A\mathbf{x}=\mathbf{0}\}.\] To do this, we solve the equation $A\mathbf{x}=\mathbf{0}$.
The augmented matrix is
\begin{align*}
[A\mid \mathbf{0}]= \left[\begin{array}{rrrr|r}
1 & 0 & 3 & -2 &0\\
0 &3 & 1 & 1 &0 \\
1 & 3 & 4 & -1 &0
\end{array} \right] \xrightarrow{R_3-R_1}
\left[\begin{array}{rrrr|r}
1 & 0 & 3 & -2 &0 \\
0 & 3 & 1 & 1 & 0 \\
0 & 3 & 1 & 1 & 0
\end{array}\right] \xrightarrow{R_3-R_2}\\[6pt] \left[\begin{array}{rrrr|r}
1 & 0 & 3 & -2 &0 \\
0 & 3 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\frac{1}{3} R_2}
\left[\begin{array}{rrrr|r}
1 & 0 & 3 & -2 &0 \\
0 & 1 & 1/3 & 1/3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right].
\end{align*}
Thus, the solution is
\begin{align*}
x_1 &=-3 x_3+2x_4\\
x_2&=-\frac{1}{3} x_3 – \frac{1}{3}x_4,
\end{align*}
and the vector form solution is
\begin{align*}
\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}=
\begin{bmatrix}
-3 x_3+2x_4 \\
-\frac{1}{3} x_3 – \frac{1}{3}x_4 \\
x_3 \\
x_4
\end{bmatrix}
=x_3\begin{bmatrix}
-3 \\
-1/3 \\
1 \\
0
\end{bmatrix}+x_4\begin{bmatrix}
2 \\
-1/3 \\
0 \\
1
\end{bmatrix}.
\end{align*}
Since the nullspace consists of these solutions, we obtain
\begin{align*}
\calN(A)&=\left \{\mathbf{x}\in \R^4 \quad \middle | \quad \mathbf{x}=x_3\begin{bmatrix}
-3 \\
-1/3 \\
1 \\
0
\end{bmatrix}+x_4\begin{bmatrix}
2 \\
-1/3 \\
0 \\
1
\end{bmatrix} \text{ for any } x_3, x_4 \in \R\right \}\\[6pt] &=\Span\left\{\,\begin{bmatrix}
-3 \\
-1/3 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
2 \\
-1/3 \\
0 \\
1
\end{bmatrix} \,\right\}
\end{align*}


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
Spanning Sets for $\R^2$ or its Subspaces

In this problem, we use the following vectors in $\R^2$. \[\mathbf{a}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{b}=\begin{bmatrix} 1 \\ 1 \end{bmatrix},...

Close