Author: Yu

A Condition that a Vector is a Linear Combination of Columns Vectors of a Matrix

Problem 656

Suppose that an $n \times m$ matrix $M$ is composed of the column vectors $\mathbf{b}_1 , \cdots , \mathbf{b}_m$.

Prove that a vector $\mathbf{v} \in \R^n$ can be written as a linear combination of the column vectors if and only if there is a vector $\mathbf{x}$ which solves the equation $M \mathbf{x} = \mathbf{v}$.

 
Read solution

LoadingAdd to solve later

Determine Trigonometric Functions with Given Conditions

Problem 651

(a) Find a function
\[g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 \theta)\] such that $g(0) = g(\pi/2) = g(\pi) = 0$, where $a, b, c$ are constants.

(b) Find real numbers $a, b, c$ such that the function
\[g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 \theta)\] satisfies $g(0) = 3$, $g(\pi/2) = 1$, and $g(\pi) = -5$.

 
Read solution

LoadingAdd to solve later

Determine Whether Matrices are in Reduced Row Echelon Form, and Find Solutions of Systems

Problem 648

Determine whether the following augmented matrices are in reduced row echelon form, and calculate the solution sets of their associated systems of linear equations.

(a) $\left[\begin{array}{rrr|r} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 6 \end{array} \right]$.

(b) $\left[\begin{array}{rrr|r} 1 & 0 & 3 & -4 \\ 0 & 1 & 2 & 0 \end{array} \right]$.

(c) $\left[\begin{array}{rr|r} 1 & 2 & 0 \\ 1 & 1 & -1 \end{array} \right]$.
 
Read solution

LoadingAdd to solve later