Author: Yu

Algebraic Number is an Eigenvalue of Matrix with Rational Entries

Problem 88

A complex number $z$ is called algebraic number (respectively, algebraic integer) if $z$ is a root of a monic polynomial with rational (respectively, integer) coefficients.

Prove that $z \in \C$ is an algebraic number (resp. algebraic integer) if and only if $z$ is an eigenvalue of a matrix with rational (resp. integer) entries.
 
Read solution

LoadingAdd to solve later

Companion Matrix for a Polynomial

Problem 85

Consider a polynomial
\[p(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\] where $a_i$ are real numbers.
Define the matrix
\[A=\begin{bmatrix}
0 & 0 & \dots & 0 &-a_0 \\
1 & 0 & \dots & 0 & -a_1 \\
0 & 1 & \dots & 0 & -a_2 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \dots & 1 & -a_{n-1}
\end{bmatrix}.\]

Then prove that the characteristic polynomial $\det(xI-A)$ of $A$ is the polynomial $p(x)$.
The matrix is called the companion matrix of the polynomial $p(x)$.

 

Read solution

LoadingAdd to solve later

Isomorphism of the Endomorphism and the Tensor Product of a Vector Space

Problem 80

Let $V$ be a finite dimensional vector space over a field $K$ and let $\End (V)$ be the vector space of linear transformations from $V$ to $V$.
Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for $V$.
Show that the map $\phi:\End (V) \to V^{\oplus n}$ defined by $f\mapsto (f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ is an isomorphism.
Here $V^{\oplus n}=V\oplus \dots \oplus V$, the direct sum of $n$ copies of $V$.
Read solution

LoadingAdd to solve later