# module-theory-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- If the Nullity of a Linear Transformation is Zero, then Linearly Independent Vectors are Mapped to Linearly Independent Vectors Let $T: \R^n \to \R^m$ be a linear transformation. Suppose that the nullity of $T$ is zero. If $\{\mathbf{x}_1, \mathbf{x}_2,\dots, \mathbf{x}_k\}$ is a linearly independent subset of $\R^n$, then show that $\{T(\mathbf{x}_1), T(\mathbf{x}_2), \dots, T(\mathbf{x}_k) \}$ is a […]
- $p$-Group Acting on a Finite Set and the Number of Fixed Points Let $P$ be a $p$-group acting on a finite set $X$. Let \[ X^P=\{ x \in X \mid g\cdot x=x \text{ for all } g\in P \}. \] The prove that \[|X^P|\equiv |X| \pmod{p}.\] Proof. Let $\calO(x)$ denote the orbit of $x\in X$ under the action of the group $P$. Let […]
- A Line is a Subspace if and only if its $y$-Intercept is Zero Let $\R^2$ be the $x$-$y$-plane. Then $\R^2$ is a vector space. A line $\ell \subset \mathbb{R}^2$ with slope $m$ and $y$-intercept $b$ is defined by \[ \ell = \{ (x, y) \in \mathbb{R}^2 \mid y = mx + b \} .\] Prove that $\ell$ is a subspace of $\mathbb{R}^2$ if and only if $b = […]
- Simple Commutative Relation on Matrices Let $A$ and $B$ are $n \times n$ matrices with real entries. Assume that $A+B$ is invertible. Then show that \[A(A+B)^{-1}B=B(A+B)^{-1}A.\] (University of California, Berkeley Qualifying Exam) Proof. Let $P=A+B$. Then $B=P-A$. Using these, we express the given […]
- Given All Eigenvalues and Eigenspaces, Compute a Matrix Product Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces \[E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 […]
- Solve a System by the Inverse Matrix and Compute $A^{2017}\mathbf{x}$ Let $A$ be the coefficient matrix of the system of linear equations \begin{align*} -x_1-2x_2&=1\\ 2x_1+3x_2&=-1. \end{align*} (a) Solve the system by finding the inverse matrix $A^{-1}$. (b) Let $\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be the solution […]
- Abelian Normal subgroup, Quotient Group, and Automorphism Group Let $G$ be a finite group and let $N$ be a normal abelian subgroup of $G$. Let $\Aut(N)$ be the group of automorphisms of $G$. Suppose that the orders of groups $G/N$ and $\Aut(N)$ are relatively prime. Then prove that $N$ is contained in the center of […]
- Linear Transformation and a Basis of the Vector Space $\R^3$ Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$. Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$. Show […]