Let $G$ be a simple group and let $X$ be a finite set.
Suppose $G$ acts nontrivially on $X$. That is, there exist $g\in G$ and $x \in X$ such that $g\cdot x \neq x$.
Then show that $G$ is a finite group and the order of $G$ divides $|X|!$.

Let $\F_p$ be the finite field of $p$ elements, where $p$ is a prime number.
Let $G_n=\GL_n(\F_p)$ be the group of $n\times n$ invertible matrices with entries in the field $\F_p$. As usual in linear algebra, we may regard the elements of $G_n$ as linear transformations on $\F_p^n$, the $n$-dimensional vector space over $\F_p$. Therefore, $G_n$ acts on $\F_p^n$.

Let $e_n \in \F_p^n$ be the vector $(1,0, \dots,0)$.
(The so-called first standard basis vector in $\F_p^n$.)

Find the size of the $G_n$-orbit of $e_n$, and show that $\Stab_{G_n}(e_n)$ has order $|G_{n-1}|\cdot p^{n-1}$.

Conclude by induction that
\[|G_n|=p^{n^2}\prod_{i=1}^{n} \left(1-\frac{1}{p^i} \right).\]

Let $n$ be a positive integer. Let $D_{2n}$ be the dihedral group of order $2n$. Using the generators and the relations, the dihedral group $D_{2n}$ is given by
\[D_{2n}=\langle r,s \mid r^n=s^2=1, sr=r^{-1}s\rangle.\]
Put $\theta=2 \pi/n$.

(a) Prove that the matrix $\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta
\end{bmatrix}$ is the matrix representation of the linear transformation $T$ which rotates the $x$-$y$ plane about the origin in a counterclockwise direction by $\theta$ radians.

(b) Let $\GL_2(\R)$ be the group of all $2 \times 2$ invertible matrices with real entries. Show that the map $\rho: D_{2n} \to \GL_2(\R)$ defined on the generators by
\[ \rho(r)=\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta
\end{bmatrix} \text{ and }
\rho(s)=\begin{bmatrix}
0 & 1\\
1& 0
\end{bmatrix}\]
extends to a homomorphism of $D_{2n}$ into $\GL_2(\R)$.

(c) Determine whether the homomorphism $\rho$ in part (b) is injective and/or surjective.

Let $A$ and $B$ be normal subgroups of a group $G$. Suppose $A\cap B=\{e\}$, where $e$ is the unit element of the group $G$.
Show that for any $a \in A$ and $b \in B$ we have $ab=ba$.

An isomorphism from a group $G$ to itself is calledan automorphismof $G$.
The set of all automorphism is denoted by $\Aut(G)$.

Definition (characteristic subgroup).

A subgroup $H$ of a group $G$ is called characteristic in $G$ if for any $\phi \in \Aut(G)$, we have $\phi(H)=H$. In words, this means that each automorphism of $G$ maps $H$ to itself.

Prove the followings.

(a) If $H$ is characteristic in $G$, then $H$ is a normal subgroup of $G$.

(b) If $H$ is the unique subgroup of $G$ of a given order, then $H$ is characteristic in $G$.

(c) Suppose that a subgroup $K$ is characteristic in a group $H$ and $H$ is a normal subgroup of $G$. Then $K$ is a normal subgroup in $G$.