# Category: Group Theory

## Problem 17

Let $p$ be a prime number. Suppose that the order of each element of a finite group $G$ is a power of $p$. Then prove that $G$ is a $p$-group. Namely, the order of $G$ is a power of $p$. Add to solve later

## Problem 16

Show that any subgroup of index $2$ in a group is a normal subgroup. Add to solve later

## Problem 10

Let $G$ be a group of order $|G|=p^n$ for some $n \in \N$.
(Such a group is called a $p$-group.)

Show that the center $Z(G)$ of the group $G$ is not trivial. Add to solve later

## Problem 6

Define the functions $f_{a,b}(x)=ax+b$, where $a, b \in \R$ and $a>0$.

Show that $G:=\{ f_{a,b} \mid a, b \in \R, a>0\}$ is a group . The group operation is function composition. Add to solve later

## Problem 4

Let $G$ and $G’$ be a group and let $\phi:G \to G’$ be a group homomorphism.

Show that $\phi$ induces an injective homomorphism from $G/\ker{\phi} \to G’$. Add to solve later

## Problem 3

Let $H$ be a normal subgroup of a group $G$.
Then show that $N:=[H, G]$ is a subgroup of $H$ and $N \triangleleft G$.

Here $[H, G]$ is a subgroup of $G$ generated by commutators $[h,k]:=hkh^{-1}k^{-1}$.

In particular, the commutator subgroup $[G, G]$ is a normal subgroup of $G$ Add to solve later