Recall that a complex matrix is called Hermitian if $A^*=A$, where $A^*=\bar{A}^{\trans}$.
Prove that every Hermitian matrix $A$ can be written as the sum
\[A=B+iC,\]
where $B$ is a real symmetric matrix and $C$ is a real skew-symmetric matrix.

Let $A$ be an $n\times n$ matrix. Suppose that $A$ has real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ with corresponding eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.
Furthermore, suppose that
\[|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n|.\]
Let
\[\mathbf{x}_0=c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_n\mathbf{u}_n\]
for some real numbers $c_1, c_2, \dots, c_n$ and $c_1\neq 0$.

Define
\[\mathbf{x}_{k+1}=A\mathbf{x}_k \text{ for } k=0, 1, 2,\dots\]
and let
\[\beta_k=\frac{\mathbf{x}_k\cdot \mathbf{x}_{k+1}}{\mathbf{x}_k \cdot \mathbf{x}_k}=\frac{\mathbf{x}_k^{\trans} \mathbf{x}_{k+1}}{\mathbf{x}_k^{\trans} \mathbf{x}_k}.\]

Prove that
\[\lim_{k\to \infty} \beta_k=\lambda_1.\]

A real symmetric $n \times n$ matrix $A$ is called positive definite if
\[\mathbf{x}^{\trans}A\mathbf{x}>0\]
for all nonzero vectors $\mathbf{x}$ in $\R^n$.

(a) Prove that the eigenvalues of a real symmetric positive-definite matrix $A$ are all positive.

(b) Prove that if eigenvalues of a real symmetric matrix $A$ are all positive, then $A$ is positive-definite.

Suppose that the vectors
\[\mathbf{v}_1=\begin{bmatrix}
-2 \\
1 \\
0 \\
0 \\
0
\end{bmatrix}, \qquad \mathbf{v}_2=\begin{bmatrix}
-4 \\
0 \\
-3 \\
-2 \\
1
\end{bmatrix}\]
are a basis vectors for the null space of a $4\times 5$ matrix $A$. Find a vector $\mathbf{x}$ such that
\[\mathbf{x}\neq0, \quad \mathbf{x}\neq \mathbf{v}_1, \quad \mathbf{x}\neq \mathbf{v}_2,\]
and
\[A\mathbf{x}=\mathbf{0}.\]

(Stanford University, Linear Algebra Exam Problem)

Determine the values of $x$ so that the matrix
\[A=\begin{bmatrix}
1 & 1 & x \\
1 &x &x \\
x & x & x
\end{bmatrix}\]
is invertible.
For those values of $x$, find the inverse matrix $A^{-1}$.

(a) Let $A$ be a $6\times 6$ matrix and suppose that $A$ can be written as
\[A=BC,\]
where $B$ is a $6\times 5$ matrix and $C$ is a $5\times 6$ matrix.

Prove that the matrix $A$ cannot be invertible.

(b) Let $A$ be a $2\times 2$ matrix and suppose that $A$ can be written as
\[A=BC,\]
where $B$ is a $ 2\times 3$ matrix and $C$ is a $3\times 2$ matrix.

Let $V$ be the subspace of $\R^4$ defined by the equation
\[x_1-x_2+2x_3+6x_4=0.\]
Find a linear transformation $T$ from $\R^3$ to $\R^4$ such that the null space $\calN(T)=\{\mathbf{0}\}$ and the range $\calR(T)=V$. Describe $T$ by its matrix $A$.

Find all eigenvalues of the matrix
\[A=\begin{bmatrix}
0 & i & i & i \\
i &0 & i & i \\
i & i & 0 & i \\
i & i & i & 0
\end{bmatrix},\]
where $i=\sqrt{-1}$. For each eigenvalue of $A$, determine its algebraic multiplicity and geometric multiplicity.

Let
\[A=\begin{bmatrix}
2 & -1 & -1 \\
-1 &2 &-1 \\
-1 & -1 & 2
\end{bmatrix}.\]
Determine whether the matrix $A$ is diagonalizable. If it is diagonalizable, then diagonalize $A$.
That is, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

Let
\[A=\begin{bmatrix}
1 & 1 & 1 \\
0 &0 &1 \\
0 & 0 & 1
\end{bmatrix}\]
be a $3\times 3$ matrix. Then find the formula for $A^n$ for any positive integer $n$.