Category: Linear Algebra

Problem 381

Consider the matrix
$A=\begin{bmatrix} 3/2 & 2\\ -1& -3/2 \end{bmatrix} \in M_{2\times 2}(\R).$

(a) Find the eigenvalues and corresponding eigenvectors of $A$.

(b) Show that for $\mathbf{v}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}\in \R^2$, we can choose $n$ large enough so that the length $\|A^n\mathbf{v}\|$ is as small as we like.

(University of California, Berkeley, Linear Algebra Final Exam Problem)

Read solution

Problem 380

Find the determinant of the following matrix
$A=\begin{bmatrix} 6 & 2 & 2 & 2 &2 \\ 2 & 6 & 2 & 2 & 2 \\ 2 & 2 & 6 & 2 & 2 \\ 2 & 2 & 2 & 6 & 2 \\ 2 & 2 & 2 & 2 & 6 \end{bmatrix}.$

(Harvard University, Linear Algebra Exam Problem)

Read solution

Problem 379

Find all the eigenvalues and eigenvectors of the matrix
$A=\begin{bmatrix} 3 & 9 & 9 & 9 \\ 9 &3 & 9 & 9 \\ 9 & 9 & 3 & 9 \\ 9 & 9 & 9 & 3 \end{bmatrix}.$

(Harvard University, Linear Algebra Final Exam Problem)

Problem 378

Let $A$ be an $n \times n$ matrix and let $c$ be a complex number.

(a) For each eigenvalue $\lambda$ of $A$, prove that $\lambda+c$ is an eigenvalue of the matrix $A+cI$, where $I$ is the identity matrix. What can you say about the eigenvectors corresponding to $\lambda+c$?

(b) Prove that the algebraic multiplicity of the eigenvalue $\lambda$ of $A$ is the same as the algebraic multiplicity of the eigenvalue $\lambda+c$ of $A+cI$ are equal.

(c) How about geometric multiplicities?

Problem 377

Let $A$ be an $n\times n$ idempotent complex matrix.
Then prove that $A$ is diagonalizable.

Problem 376

(a) Let
$A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$ Find the eigenvalues of the matrix $A$. Also give the algebraic multiplicity of each eigenvalue.

(b) Let
$A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$ One of the eigenvalues of the matrix $A$ is $\lambda=0$. Find the geometric multiplicity of the eigenvalue $\lambda=0$.

Problem 375

Let $n>1$ be a positive integer. Let $V=M_{n\times n}(\C)$ be the vector space over the complex numbers $\C$ consisting of all complex $n\times n$ matrices. The dimension of $V$ is $n^2$.
Let $A \in V$ and consider the set
$S_A=\{I=A^0, A, A^2, \dots, A^{n^2-1}\}$ of $n^2$ elements.
Prove that the set $S_A$ cannot be a basis of the vector space $V$ for any $A\in V$.

Problem 374

Let $A=\begin{bmatrix} a_0 & a_1 & \dots & a_{n-2} &a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-3} & a_{n-2} \\ a_{n-2} & a_{n-1} & \dots & a_{n-4} & a_{n-3} \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{2} & a_3 & \dots & a_{0} & a_{1}\\ a_{1} & a_2 & \dots & a_{n-1} & a_{0} \end{bmatrix}$ be a complex $n \times n$ matrix.
Such a matrix is called circulant matrix.
Then prove that the determinant of the circulant matrix $A$ is given by
$\det(A)=\prod_{k=0}^{n-1}(a_0+a_1\zeta^k+a_2 \zeta^{2k}+\cdots+a_{n-1}\zeta^{k(n-1)}),$ where $\zeta=e^{2 \pi i/n}$ is a primitive $n$-th root of unity.

Problem 373

Let $A$ be a $3\times 3$ matrix. Suppose that $A$ has eigenvalues $2$ and $-1$, and suppose that $\mathbf{u}$ and $\mathbf{v}$ are eigenvectors corresponding to $2$ and $-1$, respectively, where
$\mathbf{u}=\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \text{ and } \mathbf{v}=\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$ Then compute $A^5\mathbf{w}$, where
$\mathbf{w}=\begin{bmatrix} 7 \\ 2 \\ -3 \end{bmatrix}.$

Problem 371

Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$ satisfying
$2x+3y+5z+7w=0.$ Then prove that the set $S$ is a subspace of $\R^4$.

(Linear Algebra Exam Problem, The Ohio State University)

Read solution

Problem 370

Let $T: \R^2 \to \R^2$ be a linear transformation such that
$T\left(\, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \,\right)=\begin{bmatrix} 4 \\ 1 \end{bmatrix}, T\left(\, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \,\right)=\begin{bmatrix} 3 \\ 2 \end{bmatrix}.$ Then find the matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for every $\mathbf{x}\in \R^2$, and find the rank and nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)

Read solution

Problem 369

Let $T:\R^3 \to \R^2$ be a linear transformation such that
$T(\mathbf{e}_1)=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix} 0 \\ 1 \end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix} 1 \\ 0 \end{bmatrix},$ where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are the standard basis of $\R^3$.
Then find the rank and the nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)

Read solution

Problem 368

Let $T$ be a linear transformation from $\R^3$ to $\R^2$ such that
$T\left(\, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\,\right) =\begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ and }T\left(\, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}\,\right)=\begin{bmatrix} 0 \\ 1 \end{bmatrix}.$ Then find $T\left(\, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \,\right)$.

(The Ohio State University, Linear Algebra Exam Problem)
Read solution

Problem 367

Let $P_2$ be the vector space of all polynomials of degree $2$ or less with real coefficients.
Let
$S=\{1+x+2x^2, \quad x+2x^2, \quad -1, \quad x^2\}$ be the set of four vectors in $P_2$.

Then find a basis of the subspace $\Span(S)$ among the vectors in $S$.

(Linear Algebra Exam Problem, the Ohio State University)

Read solution

Problem 366

Let $A=\begin{bmatrix} 1 & 0 & 1 \\ 0 &1 &0 \end{bmatrix}$.

(a) Find an orthonormal basis of the null space of $A$.

(b) Find the rank of $A$.

(c) Find an orthonormal basis of the row space of $A$.

(The Ohio State University, Linear Algebra Exam Problem)

Read solution

Problem 365

Let $f(x)=\sin^2(x)$, $g(x)=\cos^2(x)$, and $h(x)=1$. These are vectors in $C[-1, 1]$.
Determine whether the set $\{f(x), \, g(x), \, h(x)\}$ is linearly dependent or linearly independent.

(The Ohio State University, Linear Algebra Midterm Exam Problem)

Read solution

Problem 364

These are True or False problems.
For each of the following statements, determine if it contains a wrong information or not.

1. Let $A$ be a $5\times 3$ matrix. Then the range of $A$ is a subspace in $\R^3$.
2. The function $f(x)=x^2+1$ is not in the vector space $C[-1,1]$ because $f(0)=1\neq 0$.
3. Since we have $\sin(x+y)=\sin(x)+\sin(y)$, the function $\sin(x)$ is a linear transformation.
4. The set
$\left\{\, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \,\right\}$ is an orthonormal set.

(Linear Algebra Exam Problem, The Ohio State University)

Problem 363

(a) Find all the eigenvalues and eigenvectors of the matrix
$A=\begin{bmatrix} 3 & -2\\ 6& -4 \end{bmatrix}.$

(b) Let
$A=\begin{bmatrix} 1 & 0 & 3 \\ 4 &5 &6 \\ 7 & 0 & 9 \end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 &0 \\ 0 & 0 & 4 \end{bmatrix}.$ Then find the value of
$\det(A^2B^{-1}A^{-2}B^2).$ (For part (b) without computation, you may assume that $A$ and $B$ are invertible matrices.)

Problem 361

Let
$A=\begin{bmatrix} 3 & -12 & 4 \\ -1 &0 &-2 \\ -1 & 5 & -1 \end{bmatrix}.$ Then find all eigenvalues of $A^5$. If $A$ is invertible, then find all the eigenvalues of $A^{-1}$.

Problem 357

Let $A$ be an $n\times n$ matrix. Assume that every vector $\mathbf{x}$ in $\R^n$ is an eigenvector for some eigenvalue of $A$.
Prove that there exists $\lambda\in \R$ such that $A=\lambda I$, where $I$ is the $n\times n$ identity matrix.