Category: Linear Algebra

Problems and Solutions About Similar Matrices

Problem 319

Let $A, B$, and $C$ be $n \times n$ matrices and $I$ be the $n\times n$ identity matrix.
Prove the following statements.

(a) If $A$ is similar to $B$, then $B$ is similar to $A$.

(b) $A$ is similar to itself.

(c) If $A$ is similar to $B$ and $B$ is similar to $C$, then $A$ is similar to $C$.

(d) If $A$ is similar to the identity matrix $I$, then $A=I$.

(e) If $A$ or $B$ is nonsingular, then $AB$ is similar to $BA$.

(f) If $A$ is similar to $B$, then $A^k$ is similar to $B^k$ for any positive integer $k$.

 
Read solution

LoadingAdd to solve later

If Column Vectors Form Orthonormal set, is Row Vectors Form Orthonormal Set?

Problem 317

Suppose that $A$ is a real $n\times n$ matrix.

(a) Is it true that $A$ must commute with its transpose?

(b) Suppose that the columns of $A$ (considered as vectors) form an orthonormal set.
Is it true that the rows of $A$ must also form an orthonormal set?

(University of California, Berkeley, Linear Algebra Qualifying Exam)

 
Read solution

LoadingAdd to solve later

Is there an Odd Matrix Whose Square is $-I$?

Problem 316

Let $n$ be an odd positive integer.
Determine whether there exists an $n \times n$ real matrix $A$ such that
\[A^2+I=O,\] where $I$ is the $n \times n$ identity matrix and $O$ is the $n \times n$ zero matrix.

If such a matrix $A$ exists, find an example. If not, prove that there is no such $A$.

How about when $n$ is an even positive number?

 
Read solution

LoadingAdd to solve later

Basis with Respect to Which the Matrix for Linear Transformation is Diagonal

Problem 315

Let $P_1$ be the vector space of all real polynomials of degree $1$ or less. Consider the linear transformation $T: P_1 \to P_1$ defined by
\[T(ax+b)=(3a+b)x+a+3,\] for any $ax+b\in P_1$.

(a) With respect to the basis $B=\{1, x\}$, find the matrix of the linear transformation $T$.

(b) Find a basis $B’$ of the vector space $P_1$ such that the matrix of $T$ with respect to $B’$ is a diagonal matrix.

(c) Express $f(x)=5x+3$ as a linear combination of basis vectors of $B’$.

 
Read solution

LoadingAdd to solve later

Matrix of Linear Transformation with respect to a Basis Consisting of Eigenvectors

Problem 314

Let $T$ be the linear transformation from the vector space $\R^2$ to $\R^2$ itself given by
\[T\left( \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \right)= \begin{bmatrix}
3x_1+x_2 \\
x_1+3x_2
\end{bmatrix}.\]

(a) Verify that the vectors
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
-1
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
1 \\
1
\end{bmatrix}\] are eigenvectors of the linear transformation $T$, and conclude that $B=\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of $\R^2$ consisting of eigenvectors.

(b) Find the matrix of $T$ with respect to the basis $B=\{\mathbf{v}_1, \mathbf{v}_2\}$.

 
Read solution

LoadingAdd to solve later

Quiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null Space

Problem 313

(a) Let $A=\begin{bmatrix}
1 & 2 & 1 \\
3 &6 &4
\end{bmatrix}$ and let
\[\mathbf{a}=\begin{bmatrix}
-3 \\
1 \\
1
\end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix}, \qquad \mathbf{c}=\begin{bmatrix}
1 \\
1
\end{bmatrix}.\] For each of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, determine whether the vector is in the null space $\calN(A)$. Do the same for the range $\calR(A)$.

(b) Find a basis of the null space of the matrix $B=\begin{bmatrix}
1 & 1 & 2 \\
-2 &-2 &-4
\end{bmatrix}$.

 
Read solution

LoadingAdd to solve later

Find a Condition that a Vector be a Linear Combination

Problem 312

Let
\[\mathbf{v}=\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}, \qquad \mathbf{v}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \qquad \mathbf{v}_2=\begin{bmatrix}
2 \\
-1 \\
2
\end{bmatrix}.\] Find the necessary and sufficient condition so that the vector $\mathbf{v}$ is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2$.

 
Read solution

LoadingAdd to solve later

Solve Linear Recurrence Relation Using Linear Algebra (Eigenvalues and Eigenvectors)

Problem 310

Let $V$ be a real vector space of all real sequences
\[(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).\] Let $U$ be the subspace of $V$ consisting of all real sequences that satisfy the linear recurrence relation
\[a_{k+2}-5a_{k+1}+3a_{k}=0\] for $k=1, 2, \dots$.
Let $T$ be the linear transformation from $U$ to $U$ defined by
\[T\big((a_1, a_2, \dots)\big)=(a_2, a_3, \dots). \]

Let $B=\{\mathbf{u}_1, \mathbf{u}_2\}$ be a basis of $U$, where
\begin{align*}
\mathbf{u}_1&=(1, 0, -3, -15, -66, \dots)\\
\mathbf{u}_2&=(0, 1, 5, 22, 95, \dots).
\end{align*}
Let $A$ be the matrix representation of the linear transformation $T: U \to U$ with respect to the basis $B$.

(a) Find the eigenvalues and eigenvectors of $T$.

(b) Use the result of (a), find a sequence $(a_i)_{i=1}^{\infty}$ satisfying the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ and the initial condition $a_1=1, a_2=1$.

(c) Find the formula for the sequences $(a_i)_{i=1}^{\infty}$ satisfying the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ and express it using $a_1, a_2$.

Read solution

LoadingAdd to solve later

Matrix Representation of a Linear Transformation of Subspace of Sequences Satisfying Recurrence Relation

Problem 309

Let $V$ be a real vector space of all real sequences
\[(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).\] Let $U$ be the subspace of $V$ consisting of all real sequences that satisfy the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ for $k=1, 2, \dots$.

(a) Let
\begin{align*}
\mathbf{u}_1&=(1, 0, -3, -15, -66, \dots)\\
\mathbf{u}_2&=(0, 1, 5, 22, 95, \dots)
\end{align*}
be vectors in $U$. Prove that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a basis of $U$ and conclude that the dimension of $U$ is $2$.


(b) Let $T$ be a map from $U$ to $U$ defined by
\[T\big((a_1, a_2, \dots)\big)=(a_2, a_3, \dots). \] Verify that the map $T$ actually sends a vector $(a_i)_{i=1}^{\infty}\in V$ to a vector $T\big((a_i)_{i=1}^{\infty}\big)$ in $U$, and show that $T$ is a linear transformation from $U$ to $U$.


(c) With respect to the basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ obtained in (a), find the matrix representation $A$ of the linear transformation $T:U \to U$ from (b).

Read solution

LoadingAdd to solve later

Quiz 5: Example and Non-Example of Subspaces in 3-Dimensional Space

Problem 304

Problem 1 Let $W$ be the subset of the $3$-dimensional vector space $\R^3$ defined by
\[W=\left\{ \mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}\in \R^3 \quad \middle| \quad 2x_1x_2=x_3 \right\}.\]

(a) Which of the following vectors are in the subset $W$? Choose all vectors that belong to $W$.
\[(1) \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \qquad(2) \begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix} \qquad(3)\begin{bmatrix}
3 \\
0 \\
0
\end{bmatrix} \qquad(4) \begin{bmatrix}
0 \\
0
\end{bmatrix} \qquad(5) \begin{bmatrix}
1 & 2 & 4 \\
1 &2 &4
\end{bmatrix} \qquad(6) \begin{bmatrix}
1 \\
-1 \\
-2
\end{bmatrix}.\]

(b) Determine whether $W$ is a subspace of $\R^3$ or not.
 


Problem 2 Let $W$ be the subset of $\R^3$ defined by
\[W=\left\{ \mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \in \R^3 \quad \middle| \quad x_1=3x_2 \text{ and } x_3=0 \right\}.\] Determine whether the subset $W$ is a subspace of $\R^3$ or not.

 
Read solution

LoadingAdd to solve later

Given a Spanning Set of the Null Space of a Matrix, Find the Rank

Problem 303

Let $A$ be a real $7\times 3$ matrix such that its null space is spanned by the vectors
\[\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}, \text{ and } \begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix}.\] Then find the rank of the matrix $A$.

(Purdue University, Linear Algebra Final Exam Problem)
 
Read solution

LoadingAdd to solve later

Solve a System by the Inverse Matrix and Compute $A^{2017}\mathbf{x}$

Problem 300

Let $A$ be the coefficient matrix of the system of linear equations
\begin{align*}
-x_1-2x_2&=1\\
2x_1+3x_2&=-1.
\end{align*}

(a) Solve the system by finding the inverse matrix $A^{-1}$.

(b) Let $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$ be the solution of the system obtained in part (a).
Calculate and simplify
\[A^{2017}\mathbf{x}.\]

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Express a Vector as a Linear Combination of Given Three Vectors

Problem 298

Let
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
5 \\
-1
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
1 \\
4 \\
3
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}, \mathbf{b}=\begin{bmatrix}
2 \\
13 \\
6
\end{bmatrix}.\] Express the vector $\mathbf{b}$ as a linear combination of the vector $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Compute and Simplify the Matrix Expression Including Transpose and Inverse Matrices

Problem 297

Let $A, B, C$ be the following $3\times 3$ matrices.
\[A=\begin{bmatrix}
1 & 2 & 3 \\
4 &5 &6 \\
7 & 8 & 9
\end{bmatrix}, B=\begin{bmatrix}
1 & 0 & 1 \\
0 &3 &0 \\
1 & 0 & 5
\end{bmatrix}, C=\begin{bmatrix}
-1 & 0\ & 1 \\
0 &5 &6 \\
3 & 0 & 1
\end{bmatrix}.\] Then compute and simplify the following expression.
\[(A^{\trans}-B)^{\trans}+C(B^{-1}C)^{-1}.\]

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Solve the System of Linear Equations and Give the Vector Form for the General Solution

Problem 296

Solve the following system of linear equations and give the vector form for the general solution.
\begin{align*}
x_1 -x_3 -2x_5&=1 \\
x_2+3x_3-x_5 &=2 \\
2x_1 -2x_3 +x_4 -3x_5 &= 0
\end{align*}

(The Ohio State University, linear algebra midterm exam problem)
 
Read solution

LoadingAdd to solve later