# Category: Linear Algebra

## Problem 528

Let $V$ denote the vector space of all real $2\times 2$ matrices.
Suppose that the linear transformation from $V$ to $V$ is given as below.
$T(A)=\begin{bmatrix} 2 & 3\\ 5 & 7 \end{bmatrix}A-A\begin{bmatrix} 2 & 3\\ 5 & 7 \end{bmatrix}.$ Prove or disprove that the linear transformation $T:V\to V$ is an isomorphism.

## Problem 527

A square matrix $A$ is called idempotent if $A^2=A$.

(a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$.
Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$.

Prove that $P$ is an idempotent matrix.

(b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be unit vectors in $\R^n$ such that $\mathbf{u}$ and $\mathbf{v}$ are orthogonal.
Let $Q=\mathbf{u}\mathbf{u}^{\trans}+\mathbf{v}\mathbf{v}^{\trans}$.

Prove that $Q$ is an idempotent matrix.

(c) Prove that each nonzero vector of the form $a\mathbf{u}+b\mathbf{v}$ for some $a, b\in \R$ is an eigenvector corresponding to the eigenvalue $1$ for the matrix $Q$ in part (b).

## Problem 514

Prove that a positive definite matrix has a unique positive definite square root.

## Problem 513

Let $A$ be a square matrix. A matrix $B$ satisfying $B^2=A$ is call a square root of $A$.

Find all the square roots of the matrix
$A=\begin{bmatrix} 2 & 2\\ 2& 2 \end{bmatrix}.$

## Problem 512

(a) Prove that the matrix $A=\begin{bmatrix} 0 & 1\\ 0& 0 \end{bmatrix}$ does not have a square root.
Namely, show that there is no complex matrix $B$ such that $B^2=A$.

(b) Prove that the $2\times 2$ identity matrix $I$ has infinitely many distinct square root matrices.

## Problem 509

Using the numbers appearing in
$\pi=3.1415926535897932384626433832795028841971693993751058209749\dots$ we construct the matrix $A=\begin{bmatrix} 3 & 14 &1592& 65358\\ 97932& 38462643& 38& 32\\ 7950& 2& 8841& 9716\\ 939937510& 5820& 974& 9 \end{bmatrix}.$

Prove that the matrix $A$ is nonsingular.

## Problem 508

Let $A$ be a square matrix.
Prove that the eigenvalues of the transpose $A^{\trans}$ are the same as the eigenvalues of $A$.

## Problem 506

Let $A$ be an $n\times n$ invertible matrix. Then prove the transpose $A^{\trans}$ is also invertible and that the inverse matrix of the transpose $A^{\trans}$ is the transpose of the inverse matrix $A^{-1}$.
Namely, show that
$(A^{\trans})^{-1}=(A^{-1})^{\trans}.$

## Problem 505

Let $A$ be a singular $2\times 2$ matrix such that $\tr(A)\neq -1$ and let $I$ be the $2\times 2$ identity matrix.
Then prove that the inverse matrix of the matrix $I+A$ is given by the following formula:
$(I+A)^{-1}=I-\frac{1}{1+\tr(A)}A.$

Using the formula, calculate the inverse matrix of $\begin{bmatrix} 2 & 1\\ 1& 2 \end{bmatrix}$.

## Problem 504

Prove that if $A$ is a diagonalizable nilpotent matrix, then $A$ is the zero matrix $O$.

## Problem 502

Find the inverse matrix of the $3\times 3$ matrix
$A=\begin{bmatrix} 7 & 2 & -2 \\ -6 &-1 &2 \\ 6 & 2 & -1 \end{bmatrix}$ using the Cayley-Hamilton theorem.

## Problem 500

10 questions about nonsingular matrices, invertible matrices, and linearly independent vectors.

The quiz is designed to test your understanding of the basic properties of these topics.

You can take the quiz as many times as you like.

The solutions will be given after completing all the 10 problems.
Click the View question button to see the solutions.

## Problem 498

Let $T:\R^2 \to \R^2$ be a linear transformation of the $2$-dimensional vector space $\R^2$ (the $x$-$y$-plane) to itself which is the reflection across a line $y=mx$ for some $m\in \R$.

Then find the matrix representation of the linear transformation $T$ with respect to the standard basis $B=\{\mathbf{e}_1, \mathbf{e}_2\}$ of $\R^2$, where
$\mathbf{e}_1=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{e}_2=\begin{bmatrix} 0 \\ 1 \end{bmatrix}.$

## Problem 492

Let
$D=\begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 &d_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$ be a diagonal matrix with distinct diagonal entries: $d_i\neq d_j$ if $i\neq j$.
Let $A=(a_{ij})$ be an $n\times n$ matrix such that $A$ commutes with $D$, that is,
$AD=DA.$ Then prove that $A$ is a diagonal matrix.

## Problem 486

Determine whether there exists a nonsingular matrix $A$ if
$A^4=ABA^2+2A^3,$ where $B$ is the following matrix.
$B=\begin{bmatrix} -1 & 1 & -1 \\ 0 &-1 &0 \\ 2 & 1 & -4 \end{bmatrix}.$

If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$.

(The Ohio State University, Linear Algebra Final Exam Problem)

## Problem 485

Let
$A=\begin{bmatrix} 1 & -14 & 4 \\ -1 &6 &-2 \\ -2 & 24 & -7 \end{bmatrix} \quad \text{ and }\quad \mathbf{v}=\begin{bmatrix} 4 \\ -1 \\ -7 \end{bmatrix}.$ Find $A^{10}\mathbf{v}$.

You may use the following information without proving it.
The eigenvalues of $A$ are $-1, 0, 1$. The eigenspaces are given by
$E_{-1}=\Span\left\{\, \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix} \,\right\}, \quad E_{0}=\Span\left\{\, \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} \,\right\}, \quad E_{1}=\Span\left\{\, \begin{bmatrix} -4 \\ 2 \\ 7 \end{bmatrix} \,\right\}.$

(The Ohio State University, Linear Algebra Final Exam Problem)

## Problem 484

Let $A$ be a square matrix and its characteristic polynomial is given by
$p(t)=(t-1)^3(t-2)^2(t-3)^4(t-4).$ Find the rank of $A$.

(The Ohio State University, Linear Algebra Final Exam Problem)

## Problem 483

Diagonalize the matrix
$A=\begin{bmatrix} 1 & 1 & 1 \\ 1 &1 &1 \\ 1 & 1 & 1 \end{bmatrix}.$ Namely, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

(The Ohio State University, Linear Algebra Final Exam Problem)

## Problem 482

For which values of constants $a, b$ and $c$ is the matrix
$A=\begin{bmatrix} 7 & a & b \\ 0 &2 &c \\ 0 & 0 & 3 \end{bmatrix}$ diagonalizable?

(The Ohio State University, Linear Algebra Final Exam Problem)

## Problem 481

Let $P_2$ be the vector space of all polynomials with real coefficients of degree $2$ or less.
Let $S=\{p_1(x), p_2(x), p_3(x), p_4(x)\}$, where
\begin{align*}
\end{align*}

(a) Find a basis of $P_2$ among the vectors of $S$. (Explain why it is a basis of $P_2$.)

(b) Let $B’$ be the basis you obtained in part (a).
For each vector of $S$ which is not in $B’$, find the coordinate vector of it with respect to the basis $B’$.

(The Ohio State University, Linear Algebra Final Exam Problem)