## A Maximal Ideal in the Ring of Continuous Functions and a Quotient Ring

## Problem 345

Let $R$ be the ring of all continuous functions on the interval $[0, 2]$.

Let $I$ be the subset of $R$ defined by

\[I:=\{ f(x) \in R \mid f(1)=0\}.\]

Then prove that $I$ is an ideal of the ring $R$.

Moreover, show that $I$ is maximal and determine $R/I$.