Common Eigenvector of Two Matrices and Determinant of Commutator

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 13

Let $A$ and $B$ be $n\times n$ matrices.
Suppose that these matrices have a common eigenvector $\mathbf{x}$.

Show that $\det(AB-BA)=0$.
LoadingAdd to solve later

Sponsored Links


Steps.

  1. Write down eigenequations of $A$ and $B$ with the eigenvector $\mathbf{x}$.
  2. Show that AB-BA is singular.
  3. A matrix is singular if and only if the determinant of the matrix is zero.

Proof.

Let $\alpha$ and $\beta$ be eigenvalues of $A$ and $B$ such that the vector $\mathbf{x}$ is a corresponding eigenvector.
Namely we have $A \mathbf{x}=\alpha \mathbf{x}$ and $B\mathbf{x}=\beta \mathbf{x}$.

Then we have
\begin{align*}
(AB-BA)\mathbf{x}&=AB\mathbf{x}-BA\mathbf{x}=A(\beta \mathbf{x}) -B( \alpha \mathbf{x}) \\
& = \beta A \mathbf{x}- \alpha B\mathbf{x} =\beta \alpha -\alpha \beta=0.
\end{align*}

By the definition of eigenvector,  $\mathbf{x}$ is a non-zero vector. Thus the matrix $AB-BA$ is singular.
Equivalently the determinant of $AB-BA$ is zero.

Comment.

This is a simple necessary condition that $A$ and $B$ have a common eigenvector.

Here are few derived questions.

  • Is this a sufficient condition?
  • If so prove it.
  • If not give a counterexample,
  • and find a necessary and sufficient condition.

LoadingAdd to solve later

Sponsored Links

More from my site

  • All the Eigenvectors of a Matrix Are Eigenvectors of Another MatrixAll the Eigenvectors of a Matrix Are Eigenvectors of Another Matrix Let $A$ and $B$ be an $n \times n$ matrices. Suppose that all the eigenvalues of $A$ are distinct and the matrices $A$ and $B$ commute, that is $AB=BA$. Then prove that each eigenvector of $A$ is an eigenvector of $B$. (It could be that each eigenvector is an eigenvector for […]
  • If Matrices Commute $AB=BA$, then They Share a Common EigenvectorIf Matrices Commute $AB=BA$, then They Share a Common Eigenvector Let $A$ and $B$ be $n\times n$ matrices and assume that they commute: $AB=BA$. Then prove that the matrices $A$ and $B$ share at least one common eigenvector.   Proof. Let $\lambda$ be an eigenvalue of $A$ and let $\mathbf{x}$ be an eigenvector corresponding to […]
  • An Example of a Real Matrix that Does Not Have Real EigenvaluesAn Example of a Real Matrix that Does Not Have Real Eigenvalues Let \[A=\begin{bmatrix} a & b\\ -b& a \end{bmatrix}\] be a $2\times 2$ matrix, where $a, b$ are real numbers. Suppose that $b\neq 0$. Prove that the matrix $A$ does not have real eigenvalues.   Proof. Let $\lambda$ be an arbitrary eigenvalue of […]
  • Find All Values of $x$ so that a Matrix is SingularFind All Values of $x$ so that a Matrix is Singular Let \[A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular.   Hint. Use the fact that a matrix is singular if and only […]
  • A Relation of Nonzero Row Vectors and Column VectorsA Relation of Nonzero Row Vectors and Column Vectors Let $A$ be an $n\times n$ matrix. Suppose that $\mathbf{y}$ is a nonzero row vector such that \[\mathbf{y}A=\mathbf{y}.\] (Here a row vector means a $1\times n$ matrix.) Prove that there is a nonzero column vector $\mathbf{x}$ such that \[A\mathbf{x}=\mathbf{x}.\] (Here a […]
  • Maximize the Dimension of the Null Space of $A-aI$Maximize the Dimension of the Null Space of $A-aI$ Let \[ A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.\] Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]
  • Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam)Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam) Let \[\begin{bmatrix} 0 & 0 & 1 \\ 1 &0 &0 \\ 0 & 1 & 0 \end{bmatrix}.\] (a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers? (b) Calculate $A^{2009}$. (Princeton University, […]
  • Compute Determinant of a Matrix Using Linearly Independent VectorsCompute Determinant of a Matrix Using Linearly Independent Vectors Let $A$ be a $3 \times 3$ matrix. Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have \[A\mathbf{x}=\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, A\mathbf{y}=\begin{bmatrix} 0 \\ 1 \\ 0 […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra
Transpose of a Matrix and Eigenvalues and Related Questions

Let $A$ be an $n \times n$ real matrix. Prove the followings. (a) The matrix $AA^{\trans}$ is a symmetric matrix....

Close