Compute $A^5\mathbf{u}$ Using Linear Combination

Ohio State University exam problems and solutions in mathematics

Problem 696

Let
\[A=\begin{bmatrix}
-4 & -6 & -12 \\
-2 &-1 &-4 \\
2 & 3 & 6
\end{bmatrix}, \quad \mathbf{u}=\begin{bmatrix}
6 \\
5 \\
-3
\end{bmatrix}, \quad \mathbf{v}=\begin{bmatrix}
-2 \\
0 \\
1
\end{bmatrix}, \quad \text{ and } \mathbf{w}=\begin{bmatrix}
-2 \\
-1 \\
1
\end{bmatrix}.\]

(a) Express the vector $\mathbf{u}$ as a linear combination of $\mathbf{v}$ and $\mathbf{w}$.

(b) Compute $A^5\mathbf{v}$.

(c) Compute $A^5\mathbf{w}$.

(d) Compute $A^5\mathbf{u}$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) Express the vector $\mathbf{u}$ as a linear combination of $\mathbf{v}$ and $\mathbf{w}$.

Our goal here is to find scalars $c_1, c_2$ such that
\[\mathbf{u}=c_1\mathbf{v}+c_2\mathbf{w}.\] This is the same as the matrix equation
\[\begin{bmatrix}
-2 & -2 \\
0 & -1 \\
1 &1
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}=\begin{bmatrix}
6 \\
5 \\
-3
\end{bmatrix}.\] To solve this, we reduced the augmented matrix as follows:
\begin{align*}
\left[\begin{array}{rr|r}
-2 & -2 & 6 \\
0 &-1 &5 \\
1 & 1 & -3
\end{array}\right] \xrightarrow{R_1 \leftrightarrow R_3}
\left[\begin{array}{rr|r}
1 & 1 & -3 \\
0 &-1 &5 \\
-2 & -2 & 6
\end{array}\right]\\[6pt] \xrightarrow[-R_2]{R_3+2R_1}
\left[\begin{array}{rr|r}
1 & 1 & -3 \\
0 &1 &-5 \\
0 & 0 & 0
\end{array}\right] \xrightarrow{R_1-R_2}
\left[\begin{array}{rr|r}
1 & 0 & 2 \\
0 &1 &-5 \\
0 & 0 & 0
\end{array}\right].
\end{align*}
This yields the solution $c_1=2$ and $c_2=-5$.
Hence, we have the linear combination
\[\mathbf{u}=2\mathbf{v}-5\mathbf{w}.\]

(b) Compute $A^5\mathbf{v}$.

We first compute $A\mathbf{v}$. We have
\[A\mathbf{v}= \begin{bmatrix}
-4 & -6 & -12 \\
-2 &-1 &-4 \\
2 & 3 & 6
\end{bmatrix}
\begin{bmatrix}
-2 \\
0 \\
1
\end{bmatrix}
=\begin{bmatrix}
-4 \\
0 \\
2
\end{bmatrix}=2\begin{bmatrix}
-2 \\
0 \\
1
\end{bmatrix}=2\mathbf{v}.
\] Using this relation $A\mathbf{v}=2\mathbf{v}$, we obtain
\[A^2\mathbf{v}=AA\mathbf{v}=A(2\mathbf{v})=2A\mathbf{v}=2(2\mathbf{v})=2^2\mathbf{v}.\] Next, we have
\[A^3\mathbf{v}=AA^2\mathbf{v}=A(2^2\mathbf{v})=2^2A\mathbf{v}=2^2(a\mathbf{v})=2^3\mathbf{v}.\] Repeating this process, we see that $A^5\mathbf{v}=2^5\mathbf{v}$.
Or, we can find this by computing as follows:
\begin{align*}
A^5\mathbf{v}=A^2A^3\mathbf{v}=A^2(2^3\mathbf{v})=2^3A^2\mathbf{v}=2^3(2^2\mathbf{v})=2^5\mathbf{v}.
\end{align*}
In summary, we have
\[A^5\mathbf{v}=2^5\mathbf{v}=32\begin{bmatrix}
-2 \\
0 \\
1
\end{bmatrix}=\begin{bmatrix}
-64 \\
0 \\
32
\end{bmatrix}.\]

(c) Compute $A^5\mathbf{w}$.

First, we note that
\[A\mathbf{w}= \begin{bmatrix}
-4 & -6 & -12 \\
-2 &-1 &-4 \\
2 & 3 & 6
\end{bmatrix} \begin{bmatrix}
-2 \\
-1 \\
1
\end{bmatrix}=\begin{bmatrix}
2 \\
1 \\
-1
\end{bmatrix}=-\begin{bmatrix}
-2 \\
-1 \\
1
\end{bmatrix}=-\mathbf{w}.\] Using this relation $A\mathbf{w}=-\mathbf{w}$ as in part (a), we obtain
\[A^5\mathbf{w}=(-1)^5\mathbf{w}=-\begin{bmatrix}
-2 \\
-1 \\
1
\end{bmatrix}=\begin{bmatrix}
2 \\
1 \\
-1
\end{bmatrix}.\]

(d) Compute $A^5\mathbf{u}$.

Using the linear combination $\mathbf{u}=2\mathbf{v}-5\mathbf{w}$ obtained part (a), we compute
\begin{align*}
A^5\mathbf{w}&=A^5(2\mathbf{v}-5\mathbf{w})\\
&=2A^5\mathbf{v}-5A^5\mathbf{w}\\[6pt] &=2\begin{bmatrix}
-64 \\
0 \\
32
\end{bmatrix}-5\begin{bmatrix}
2 \\
1 \\
-1
\end{bmatrix} &&\text{by (b), (c)}\\[6pt] &=\begin{bmatrix}
-138 \\
-5 \\
69
\end{bmatrix}.
\end{align*}

Common Mistake

This is a midterm exam problem of Lienar Algebra at the Ohio State University.

One common pitfall is to compute $A^5$, but this is time consuming and it is very likely to make a mistake by hand computaiton.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
If the Augmented Matrix is Row-Equivalent to the Identity Matrix, is the System Consistent?

Consider the following system of linear equations: \begin{align*} ax_1+bx_2 &=c\\ dx_1+ex_2 &=f\\ gx_1+hx_2 &=i. \end{align*} (a) Write down the augmented...

Close