Compute Determinant of a Matrix Using Linearly Independent Vectors

Linear Algebra Problems and Solutions

Problem 193

Let $A$ be a $3 \times 3$ matrix.
Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have
\[A\mathbf{x}=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, A\mathbf{y}=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, A\mathbf{z}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}.\]

Then find the value of the determinant of the matrix $A$.

 
LoadingAdd to solve later

Sponsored Links


We give two solutions.

Solution 1.

Let $B$ be the $3\times 3$ matrix whose columns are the vectors $\mathbf{x},\mathbf{y}, \mathbf{z}$, that is,
\[B=[\mathbf{x} \mathbf{y} \mathbf{z}].\]

Then we have
\[AB=\begin{bmatrix}
1 & 0 & 1 \\
0 &1 &1 \\
1 & 0 & 1
\end{bmatrix}.\]

Then we have
\[\det(A)\det(B)=\det(AB)=\begin{vmatrix}
1 & 0 & 1 \\
0 &1 &1 \\
1 & 0 & 1
\end{vmatrix}=0.\] (If two rows are equal, then the determinant is zero. Or you may compute the determinant by the second column cofactor expansion.)

Note that the column vectors of $B$ are linearly independent, and hence $B$ is nonsingular matrix. Thus the $\det(B)\neq 0$.
Therefore the determinant of $A$ must be zero.

Solution 2.

Since
\[\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}+\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix},\]

we have
\[A\mathbf{x}+A\mathbf{y}=A\mathbf{z}.\] It follows that we have
\[A(\mathbf{x}+\mathbf{y}-\mathbf{z})=\mathbf{0}.\]

Since the vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent, the linear combination $\mathbf{x}+\mathbf{y}-\mathbf{z} \neq \mathbf{0}$.
Hence the matrix $A$ is singular, and the determinant of $A$ is zero.

(Recall that a matrix $A$ is singular if and only if there exist nonzero vector $\mathbf{v}$ such that $A\mathbf{u}=\mathbf{0}$.)


LoadingAdd to solve later

Sponsored Links

More from my site

  • Find Values of $h$ so that the Given Vectors are Linearly IndependentFind Values of $h$ so that the Given Vectors are Linearly Independent Find the value(s) of $h$ for which the following set of vectors \[\left \{ \mathbf{v}_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} h \\ 1 \\ -h \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 1 \\ 2h \\ 3h+1 […]
  • Find All Values of $x$ so that a Matrix is SingularFind All Values of $x$ so that a Matrix is Singular Let \[A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular.   Hint. Use the fact that a matrix is singular if and only […]
  • Properties of Nonsingular and Singular MatricesProperties of Nonsingular and Singular Matrices An $n \times n$ matrix $A$ is called nonsingular if the only solution of the equation $A \mathbf{x}=\mathbf{0}$ is the zero vector $\mathbf{x}=\mathbf{0}$. Otherwise $A$ is called singular. (a) Show that if $A$ and $B$ are $n\times n$ nonsingular matrices, then the product $AB$ is […]
  • Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$ Let $A$ be an $n\times n$ matrix. Its only eigenvalues are $1, 2, 3, 4, 5$, possibly with multiplicities. What is the nullity of the matrix $A+I_n$, where $I_n$ is the $n\times n$ identity matrix? (The Ohio State University, Linear Algebra Final Exam […]
  • Determine Conditions on Scalars so that the Set of Vectors is Linearly DependentDetermine Conditions on Scalars so that the Set of Vectors is Linearly Dependent Determine conditions on the scalars $a, b$ so that the following set $S$ of vectors is linearly dependent. \begin{align*} S=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}, \end{align*} where \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, […]
  • Rotation Matrix in Space and its Determinant and EigenvaluesRotation Matrix in Space and its Determinant and Eigenvalues For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by \[A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.\] (a) Find the determinant of the matrix $A$. (b) Show that $A$ is an […]
  • Find All the Values of $x$ so that a Given $3\times 3$ Matrix is SingularFind All the Values of $x$ so that a Given $3\times 3$ Matrix is Singular Find all the values of $x$ so that the following matrix $A$ is a singular matrix. \[A=\begin{bmatrix} x & x^2 & 1 \\ 2 &3 &1 \\ 0 & -1 & 1 \end{bmatrix}.\]   Hint. Use the fact that a matrix is singular if and only if its determinant is […]
  • Maximize the Dimension of the Null Space of $A-aI$Maximize the Dimension of the Null Space of $A-aI$ Let \[ A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.\] Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Find the Eigenvalues and Eigenvectors of the Matrix $A^4-3A^3+3A^2-2A+8E$.

Let \[A=\begin{bmatrix} 1 & -1\\ 2& 3 \end{bmatrix}.\] Find the eigenvalues and the eigenvectors of the matrix \[B=A^4-3A^3+3A^2-2A+8E.\] (Nagoya University...

Close