Compute Power of Matrix If Eigenvalues and Eigenvectors Are Given

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 373

Let $A$ be a $3\times 3$ matrix. Suppose that $A$ has eigenvalues $2$ and $-1$, and suppose that $\mathbf{u}$ and $\mathbf{v}$ are eigenvectors corresponding to $2$ and $-1$, respectively, where
\[\mathbf{u}=\begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix} \text{ and } \mathbf{v}=\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}.\] Then compute $A^5\mathbf{w}$, where
\[\mathbf{w}=\begin{bmatrix}
7 \\
2 \\
-3
\end{bmatrix}.\]

 
LoadingAdd to solve later

Sponsored Links

Solution.

Since $\mathbf{u}$ is an eigenvector corresponding to the eigenvalue $2$, we have
\[A\mathbf{u}=2\mathbf{u}.\] Similarly, we have
\[A\mathbf{v}=-\mathbf{v}.\] From these, we have
\[A^5\mathbf{u}=2^5\mathbf{u} \text{ and } A\mathbf{v}=(-1)^5\mathbf{v}.\]

To compute $A^5\mathbf{w}$, we first need to express $\mathbf{w}$ as a linear combination of $\mathbf{u}$ and $\mathbf{v}$. Thus, we need to find scalars $c_1, c_2$ such that
\[\mathbf{w}=c_1\mathbf{u}+c_2\mathbf{v}.\] By inspection, we have
\[\begin{bmatrix}
7 \\
2 \\
-3
\end{bmatrix}=3\begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix}+2\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix},\] and thus we obtain $c_1=3$ and $c_2=2$,

We compute $A^5\mathbf{w}$ as follows:
\begin{align*}
A^5\mathbf{w}&=A^5(3\mathbf{u}+2\mathbf{v})\\
&=3A^5\mathbf{u}+2A^5\mathbf{v}\\
&=3\cdot 2^5\mathbf{u}+2\cdot (-1)^5\mathbf{v}\\
&=96\mathbf{u}-2\mathbf{v}\\[6pt] &=96\begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix}-2\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
92 \\
-2 \\
-96
\end{bmatrix}.
\end{align*}

Therefore, the result is
\[A^5\mathbf{w}=\begin{bmatrix}
92 \\
-2 \\
-96
\end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Hyperplane Through Origin is Subspace of 4-Dimensional Vector Space

Let $S$ be the subset of $\R^4$ consisting of vectors $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$ satisfying...

Close