cropped-question-logo.jpg

LoadingAdd to solve later

http://yutsumura.com/wordpress/wp-content/uploads/2016/12/cropped-question-logo.jpg


LoadingAdd to solve later

More from my site

  • Compute the Determinant of a Magic SquareCompute the Determinant of a Magic Square Let \[ A= \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix} . \] Notice that $A$ contains every integer from $1$ to $9$ and that the sums of each row, column, and diagonal of $A$ are equal. Such a grid is sometimes called a magic […]
  • Ring is a Filed if and only if the Zero Ideal is a Maximal IdealRing is a Filed if and only if the Zero Ideal is a Maximal Ideal Let $R$ be a commutative ring. Then prove that $R$ is a field if and only if $\{0\}$ is a maximal ideal of $R$.   Proof. $(\implies)$: If $R$ is a field, then $\{0\}$ is a maximal ideal Suppose that $R$ is a field and let $I$ be a non zero ideal: \[ \{0\} […]
  • Invertible Idempotent Matrix is the Identity MatrixInvertible Idempotent Matrix is the Identity Matrix A square matrix $A$ is called idempotent if $A^2=A$. Show that a square invertible idempotent matrix is the identity matrix. Proof. Let $A$ be an $n \times n$ invertible idempotent matrix. Since $A$ is invertible, the inverse matrix $A^{-1}$ of $A$ exists and it […]
  • Ascending Chain of Submodules and Union of its SubmodulesAscending Chain of Submodules and Union of its Submodules Let $R$ be a ring with $1$. Let $M$ be an $R$-module. Consider an ascending chain \[N_1 \subset N_2 \subset \cdots\] of submodules of $M$. Prove that the union \[\cup_{i=1}^{\infty} N_i\] is a submodule of $M$.   Proof. To simplify the notation, let us […]
  • Give the Formula for a Linear Transformation from $\R^3$ to $\R^2$Give the Formula for a Linear Transformation from $\R^3$ to $\R^2$ Let $T: \R^3 \to \R^2$ be a linear transformation such that \[T(\mathbf{e}_1)=\begin{bmatrix} 1 \\ 4 \end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix} 2 \\ 5 \end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix} 3 \\ 6 […]
  • Conjugate of the Centralizer of a Set is the Centralizer of the Conjugate of the SetConjugate of the Centralizer of a Set is the Centralizer of the Conjugate of the Set Let $X$ be a subset of a group $G$. Let $C_G(X)$ be the centralizer subgroup of $X$ in $G$. For any $g \in G$, show that $gC_G(X)g^{-1}=C_G(gXg^{-1})$.   Proof. $(\subset)$ We first show that $gC_G(X)g^{-1} \subset C_G(gXg^{-1})$. Take any $h\in C_G(X)$. Then for […]
  • Determine a Condition on $a, b$ so that Vectors are Linearly DependentDetermine a Condition on $a, b$ so that Vectors are Linearly Dependent Let \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} 1 \\ a \\ 5 \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 0 \\ 4 \\ b \end{bmatrix}\] be vectors in $\R^3$. Determine a […]
  • Two Matrices are Nonsingular if and only if the Product is NonsingularTwo Matrices are Nonsingular if and only if the Product is Nonsingular An $n\times n$ matrix $A$ is called nonsingular if the only vector $\mathbf{x}\in \R^n$ satisfying the equation $A\mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$. Using the definition of a nonsingular matrix, prove the following statements. (a) If $A$ and $B$ are $n\times […]

Leave a Reply

Your email address will not be published. Required fields are marked *