Add to solve later
Sponsored Links

https://yutsumura.com/wp-content/uploads/2016/12/cropped-question-logo.jpg

Add to solve later
Sponsored Links

### More from my site

- Matrix Representation of a Linear Transformation of Subspace of Sequences Satisfying Recurrence Relation
Let $V$ be a real vector space of all real sequences
\[(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).\]
Let $U$ be the subspace of $V$ consisting of all real sequences that satisfy the linear recurrence relation $a_{k+2}-5a_{k+1}+3a_{k}=0$ for $k=1, 2, \dots$.
(a) […]
- The Additive Group of Rational Numbers and The Multiplicative Group of Positive Rational Numbers are Not Isomorphic
Let $(\Q, +)$ be the additive group of rational numbers and let $(\Q_{ > 0}, \times)$ be the multiplicative group of positive rational numbers.
Prove that $(\Q, +)$ and $(\Q_{ > 0}, \times)$ are not isomorphic as groups.
Proof.
Suppose, towards a […]
- Is the Set of Nilpotent Element an Ideal?
Is it true that a set of nilpotent elements in a ring $R$ is an ideal of $R$?
If so, prove it. Otherwise give a counterexample.
Proof.
We give a counterexample.
Let $R$ be the noncommutative ring of $2\times 2$ matrices with real […]
- There is Exactly One Ring Homomorphism From the Ring of Integers to Any Ring
Let $\Z$ be the ring of integers and let $R$ be a ring with unity.
Determine all the ring homomorphisms from $\Z$ to $R$.
Definition.
Recall that if $A, B$ are rings with unity then a ring homomorphism $f: A \to B$ is a map […]
- Torsion Submodule, Integral Domain, and Zero Divisors
Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$.
The set of torsion elements is denoted
\[\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.\]
(a) Prove that if $R$ is an […]
- 10 True of False Problems about Nonsingular / Invertible Matrices
10 questions about nonsingular matrices, invertible matrices, and linearly independent vectors.
The quiz is designed to test your understanding of the basic properties of these topics.
You can take the quiz as many times as you like.
The solutions will be given after […]
- Subset of Vectors Perpendicular to Two Vectors is a Subspace
Let $\mathbf{a}$ and $\mathbf{b}$ be fixed vectors in $\R^3$, and let $W$ be the subset of $\R^3$ defined by
\[W=\{\mathbf{x}\in \R^3 \mid \mathbf{a}^{\trans} \mathbf{x}=0 \text{ and } \mathbf{b}^{\trans} \mathbf{x}=0\}.\]
Prove that the subset $W$ is a subspace of […]
- A Symmetric Positive Definite Matrix and An Inner Product on a Vector Space
(a) Suppose that $A$ is an $n\times n$ real symmetric positive definite matrix.
Prove that
\[\langle \mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\trans}A\mathbf{y}\]
defines an inner product on the vector space $\R^n$.
(b) Let $A$ be an $n\times n$ real matrix. Suppose […]