Determine Bases for Nullspaces $\calN(A)$ and $\calN(A^{T}A)$

Vector Space Problems and Solutions

Problem 713

Determine bases for $\calN(A)$ and $\calN(A^{T}A)$ when
\[
A=
\begin{bmatrix}
1 & 2 & 1 \\
1 & 1 & 3 \\
0 & 0 & 0
\end{bmatrix}
.
\] Then, determine the ranks and nullities of the matrices $A$ and $A^{\trans}A$.

 
LoadingAdd to solve later

Sponsored Links

Solution.

We will first compute
\begin{align*}
A^{T}
=&
\begin{bmatrix}
1 & 1 & 0 \\
2 & 1 & 0 \\
1 & 3 & 0
\end{bmatrix}
\;\text{and}\\
A^{T}A
=&
\begin{bmatrix}
1 & 1 & 0 \\
2 & 1 & 0 \\
1 & 3 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 1 \\
1 & 1 & 3 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1+1 & 2+1 & 1+3 \\
2+1 & 4+1 & 2+3 \\
1+3 & 2+3 & 1+9
\end{bmatrix}
=
\begin{bmatrix}
2 & 3 & 4 \\
3 & 5 & 5 \\
4 & 5 & 10
\end{bmatrix}
.
\end{align*}


Next, we will find $\calN(A)$ by row reducing $[A\mid\mathbf{0}]$:
\[
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
1 & 1 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R_{2}-R_{1}}
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
0 & -1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{-R_{2}}
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \] \[
\xrightarrow{R_{1}-2R_{2}}
\left[\begin{array}{ccc|c}
1 & 0 & 5 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\] Thus the solution to $A\mathbf{x}=\mathbf{0}$ is given by
\[
\mathbf{x}
=
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end{bmatrix}
=
\begin{bmatrix}
-5x_{3} \\ 2x_{3} \\ x_{3}
\end{bmatrix}
=
x_{3}
\begin{bmatrix}
-5 \\ 2 \\ 1
\end{bmatrix}
.
\] Thus
\begin{align*}
\calN(A)
=
\left\{\mathbf{x}\in \R^3 \quad\middle|\quad \mathbf{x}=x_{3}
\begin{bmatrix}
-5 \\ 2 \\ 1
\end{bmatrix} \text{ for any } x_{3}\in\R
\right\}
=\Span\left\{
\begin{bmatrix}
-5 \\ 2 \\ 1
\end{bmatrix}
\right\}
.
\end{align*}
Therefore,
\[
\left\{
\begin{bmatrix}
-5 \\ 2 \\ 1
\end{bmatrix}
\right\}
\] is a basis for $\calN(A)$.


Similarly, we will compute $\calN(A^{T}A)$ by row reducing $[A^{T}A\mid\mathbf{0}]$:
\[
\left[\begin{array}{ccc|c}
2 & 3 & 4 & 0 \\
3 & 5 & 5 & 0 \\
4 & 5 & 10 & 0
\end{array}\right] \xrightarrow[R_{3}-2R_{1}]{R_{2}-R_{1}}
\left[\begin{array}{ccc|c}
2 & 3 & 4 & 0 \\
1 & 2 & 1 & 0 \\
0 & -1 & 2 & 0
\end{array}\right] \xrightarrow{R_{1}-2R_{2}}
\left[\begin{array}{ccc|c}
0 & -1 & 2 & 0 \\
1 & 2 & 1 & 0 \\
0 & -1 & 2 & 0
\end{array}\right] \] \[
\xrightarrow{R_{3}-R_{1}}
\left[\begin{array}{ccc|c}
0 & -1 & 2 & 0 \\
1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R_{1}\leftrightarrow R_{2}}
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
0 & -1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \] \[
\xrightarrow[\text{then}\;-R_{2}]{R_{1}+2R_{2}}
\left[\begin{array}{ccc|c}
1 & 0 & 5 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\] Since the row reduced matrices for $[A\mid\mathbf{0}]$ and $[A^{T}A\mid\mathbf{0}]$ are identical, we can immediately conclude that
\[
\calN\left(A^{T}A\right)
=
\Span\left\{
\begin{bmatrix}
-5 \\ 2 \\ 1
\end{bmatrix}
\right\}
,
\] and that
\[
\left\{
\begin{bmatrix}
-5 \\ 2 \\ 1
\end{bmatrix}
\right\}
\] is a basis for $\calN(A^{T}A)$.


It follows that the nullities of $A$ and $A^{\trans}A$ are both $1$.
The rank-nullity theorem tells
\[\text{rank of $A$} + \text{nullity of $A$} =3.\] Hence the rank of $A$ is $2$. Similarly, the rank of $A^{\trans}A$ is $2$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • In which $\R^k$, are the Nullspace and Range Subspaces?In which $\R^k$, are the Nullspace and Range Subspaces? Let $A$ be an $m \times n$ matrix. Suppose that the nullspace of $A$ is a plane in $\R^3$ and the range is spanned by a nonzero vector $\mathbf{v}$ in $\R^5$. Determine $m$ and $n$. Also, find the rank and nullity of $A$.   Solution. For an $m \times n$ matrix $A$, the […]
  • Rank and Nullity of a Matrix, Nullity of TransposeRank and Nullity of a Matrix, Nullity of Transpose Let $A$ be an $m\times n$ matrix. The nullspace of $A$ is denoted by $\calN(A)$. The dimension of the nullspace of $A$ is called the nullity of $A$. Prove the followings. (a) $\calN(A)=\calN(A^{\trans}A)$. (b) $\rk(A)=\rk(A^{\trans}A)$.   Hint. For part (b), […]
  • A Matrix Representation of a Linear Transformation and Related SubspacesA Matrix Representation of a Linear Transformation and Related Subspaces Let $T:\R^4 \to \R^3$ be a linear transformation defined by \[ T\left (\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \,\right) = \begin{bmatrix} x_1+2x_2+3x_3-x_4 \\ 3x_1+5x_2+8x_3-2x_4 \\ x_1+x_2+2x_3 \end{bmatrix}.\] (a) Find a matrix $A$ such that […]
  • A Linear Transformation $T: U\to V$ cannot be Injective if $\dim(U) > \dim(V)$A Linear Transformation $T: U\to V$ cannot be Injective if $\dim(U) > \dim(V)$ Let $U$ and $V$ be finite dimensional vector spaces over a scalar field $\F$. Consider a linear transformation $T:U\to V$. Prove that if $\dim(U) > \dim(V)$, then $T$ cannot be injective (one-to-one).   Hints. You may use the folowing facts. A linear […]
  • Linear Transformation to 1-Dimensional Vector Space and Its KernelLinear Transformation to 1-Dimensional Vector Space and Its Kernel Let $n$ be a positive integer. Let $T:\R^n \to \R$ be a non-zero linear transformation. Prove the followings. (a) The nullity of $T$ is $n-1$. That is, the dimension of the nullspace of $T$ is $n-1$. (b) Let $B=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}\}$ be a basis of the […]
  • Quiz 7. Find a Basis of the Range, Rank, and Nullity of a MatrixQuiz 7. Find a Basis of the Range, Rank, and Nullity of a Matrix (a) Let $A=\begin{bmatrix} 1 & 3 & 0 & 0 \\ 1 &3 & 1 & 2 \\ 1 & 3 & 1 & 2 \end{bmatrix}$. Find a basis for the range $\calR(A)$ of $A$ that consists of columns of $A$. (b) Find the rank and nullity of the matrix $A$ in part (a).   Solution. (a) […]
  • Matrix Representation, Rank, and Nullity of a Linear Transformation $T:\R^2\to \R^3$Matrix Representation, Rank, and Nullity of a Linear Transformation $T:\R^2\to \R^3$ Let $T:\R^2 \to \R^3$ be a linear transformation such that \[T\left(\, \begin{bmatrix} 3 \\ 2 \end{bmatrix} \,\right) =\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \text{ and } T\left(\, \begin{bmatrix} 4\\ 3 \end{bmatrix} […]
  • Orthonormal Basis of Null Space and Row SpaceOrthonormal Basis of Null Space and Row Space Let $A=\begin{bmatrix} 1 & 0 & 1 \\ 0 &1 &0 \end{bmatrix}$. (a) Find an orthonormal basis of the null space of $A$. (b) Find the rank of $A$. (c) Find an orthonormal basis of the row space of $A$. (The Ohio State University, Linear Algebra Exam […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
In which $\R^k$, are the Nullspace and Range Subspaces?

Let $A$ be an $m \times n$ matrix. Suppose that the nullspace of $A$ is a plane in $\R^3$ and...

Close