The Union of Two Subspaces is Not a Subspace in a Vector Space
Let $U$ and $V$ be subspaces of the vector space $\R^n$.
If neither $U$ nor $V$ is a subset of the other, then prove that the union $U \cup V$ is not a subspace of $\R^n$.
Proof.
Since $U$ is not contained in $V$, there exists a vector $\mathbf{u}\in U$ but […]

Normal Subgroups, Isomorphic Quotients, But Not Isomorphic
Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$.
Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.
Proof.
We give a […]

For Fixed Matrices $R, S$, the Matrices $RAS$ form a Subspace
Let $V$ be the vector space of $k \times k$ matrices. Then for fixed matrices $R, S \in V$, define the subset $W = \{ R A S \mid A \in V \}$.
Prove that $W$ is a vector subspace of $V$.
Proof.
We verify the subspace criteria: the zero vector of $V$ is in $W$, and […]

Equivalent Conditions to be a Unitary Matrix
A complex matrix is called unitary if $\overline{A}^{\trans} A=I$.
The inner product $(\mathbf{x}, \mathbf{y})$ of complex vector $\mathbf{x}$, $\mathbf{y}$ is defined by $(\mathbf{x}, \mathbf{y}):=\overline{\mathbf{x}}^{\trans} \mathbf{y}$. The length of a complex vector […]

Determine Conditions on Scalars so that the Set of Vectors is Linearly Dependent
Determine conditions on the scalars $a, b$ so that the following set $S$ of vectors is linearly dependent.
\begin{align*}
S=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\},
\end{align*}
where
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
3 \\
1
\end{bmatrix}, […]

Find a Quadratic Function Satisfying Conditions on Derivatives
Find a quadratic function $f(x) = ax^2 + bx + c$ such that $f(1) = 3$, $f'(1) = 3$, and $f^{\prime\prime}(1) = 2$.
Here, $f'(x)$ and $f^{\prime\prime}(x)$ denote the first and second derivatives, respectively.
Solution.
Each condition required on $f$ can be turned […]