# Johns-Hopkins-exam-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- If the Nullity of a Linear Transformation is Zero, then Linearly Independent Vectors are Mapped to Linearly Independent Vectors Let $T: \R^n \to \R^m$ be a linear transformation. Suppose that the nullity of $T$ is zero. If $\{\mathbf{x}_1, \mathbf{x}_2,\dots, \mathbf{x}_k\}$ is a linearly independent subset of $\R^n$, then show that $\{T(\mathbf{x}_1), T(\mathbf{x}_2), \dots, T(\mathbf{x}_k) \}$ is a […]
- Basis and Dimension of the Subspace of All Polynomials of Degree 4 or Less Satisfying Some Conditions. Let $P_4$ be the vector space consisting of all polynomials of degree $4$ or less with real number coefficients. Let $W$ be the subspace of $P_2$ by \[W=\{ p(x)\in P_4 \mid p(1)+p(-1)=0 \text{ and } p(2)+p(-2)=0 \}.\] Find a basis of the subspace $W$ and determine the dimension of […]
- An Example of a Real Matrix that Does Not Have Real Eigenvalues Let \[A=\begin{bmatrix} a & b\\ -b& a \end{bmatrix}\] be a $2\times 2$ matrix, where $a, b$ are real numbers. Suppose that $b\neq 0$. Prove that the matrix $A$ does not have real eigenvalues. Proof. Let $\lambda$ be an arbitrary eigenvalue of […]
- Intersection of Two Null Spaces is Contained in Null Space of Sum of Two Matrices Let $A$ and $B$ be $n\times n$ matrices. Then prove that \[\calN(A)\cap \calN(B) \subset \calN(A+B),\] where $\calN(A)$ is the null space (kernel) of the matrix $A$. Definition. Recall that the null space (or kernel) of an $n \times n$ matrix […]
- Ring of Gaussian Integers and Determine its Unit Elements Denote by $i$ the square root of $-1$. Let \[R=\Z[i]=\{a+ib \mid a, b \in \Z \}\] be the ring of Gaussian integers. We define the norm $N:\Z[i] \to \Z$ by sending $\alpha=a+ib$ to \[N(\alpha)=\alpha \bar{\alpha}=a^2+b^2.\] Here $\bar{\alpha}$ is the complex conjugate of […]
- Find a Nonsingular Matrix $A$ satisfying $3A=A^2+AB$ (a) Find a $3\times 3$ nonsingular matrix $A$ satisfying $3A=A^2+AB$, where \[B=\begin{bmatrix} 2 & 0 & -1 \\ 0 &2 &-1 \\ -1 & 0 & 1 \end{bmatrix}.\] (b) Find the inverse matrix of $A$. Solution (a) Find a $3\times 3$ nonsingular matrix $A$. Assume […]
- A Singular Matrix and Matrix Equations $A\mathbf{x}=\mathbf{e}_i$ With Unit Vectors Let $A$ be a singular $n\times n$ matrix. Let \[\mathbf{e}_1=\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{e}_2=\begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, […]
- Two Subspaces Intersecting Trivially, and the Direct Sum of Vector Spaces. Let $V$ and $W$ be subspaces of $\R^n$ such that $V \cap W =\{\mathbf{0}\}$ and $\dim(V)+\dim(W)=n$. (a) If $\mathbf{v}+\mathbf{w}=\mathbf{0}$, where $\mathbf{v}\in V$ and $\mathbf{w}\in W$, then show that $\mathbf{v}=\mathbf{0}$ and $\mathbf{w}=\mathbf{0}$. (b) If $B_1$ is a […]