Determine linear transformation using matrix representation

Linear Transformation problems and solutions

Problem 324

Let $T$ be the linear transformation from the $3$-dimensional vector space $\R^3$ to $\R^3$ itself satisfying the following relations.
\begin{align*}
T\left(\, \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \,\right)
=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, \qquad T\left(\, \begin{bmatrix}
2 \\
3 \\
5
\end{bmatrix} \, \right) =
\begin{bmatrix}
0 \\
2 \\
-1
\end{bmatrix}, \qquad
T \left( \, \begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \, \right)=
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}.
\end{align*}
Then for any vector
\[\mathbf{x}=\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}\in \R^3,\] find the formula for $T(\mathbf{x})$.

 
LoadingAdd to solve later

Sponsored Links


 
We give two solutions using two different methods.

Solution 1 using the matrix representation.

The first solution uses the matrix representation of $T$.
Let $A$ be the matrix representation of the linear transformation $T$ with respect to the standard basis of $\R^3$.
Then we have $T(\mathbf{x})=A\mathbf{x}$ by definition.
We determine the matrix $A$ as follows.
We have
\begin{align*}
A\begin{bmatrix}
1 & 2 & 0 \\
1 &3 &1 \\
1 & 5 & 2
\end{bmatrix}&= \begin{bmatrix}
A\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}, & A\begin{bmatrix}
2 \\
3 \\
5
\end{bmatrix}, & A\begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \\
\end{bmatrix}\\[6 pt] &=\begin{bmatrix}
T\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}, & T\begin{bmatrix}
2 \\
3 \\
5
\end{bmatrix}, & T\begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \\
\end{bmatrix}
=\begin{bmatrix}
1 & 0 & 1 \\
0 &2 &0 \\
1 & -1 & 0
\end{bmatrix}.
\end{align*}
It follows that we have
\begin{align*}
A=\begin{bmatrix}
1 & 0 & 1 \\
0 &2 &0 \\
1 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 0 \\
1 &3 &1 \\
1 & 5 & 2
\end{bmatrix}^{-1}.
\end{align*}

Let us find the inverse matrix by using augmented matrix.
\begin{align*}
\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 1 &0 & 0 \\
1 & 3 & 1 & 0 & 1 & 0 \\
1 & 5 & 2 & 0 & 0 & 1 \\
\end{array} \right] \xrightarrow{\substack{R_2-R_1\\R_3-R_1}}
\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 1 &0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 3 & 2 & -1 & 0 & 1 \\
\end{array} \right]\\[6 pt] \xrightarrow{\substack{R_1-2R_2 \\R_3-3R_2}}
\left[\begin{array}{rrr|rrr}
1 & 0 & -2 & 3 &-2 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & -1 & 2 & -3 & 1 \\
\end{array} \right] \xrightarrow{-R_3}
\left[\begin{array}{rrr|rrr}
1 & 0 & -2 & 3 &-2 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & -2 & 3 & -1 \\
\end{array} \right]\\[6 pt] \xrightarrow{\substack{R_1+2R_3\\ R_2-R_3}}
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -1 &4 & -2 \\
0 & 1 & 0 & 1 & -2 & 1 \\
0 & 0 & 1 & -2 & 3 & -1 \\
\end{array} \right].
\end{align*}
Thus we obtain the inverse matrix
\[\begin{bmatrix}
1 & 2 & 0 \\
1 &3 &1 \\
1 & 5 & 2
\end{bmatrix}^{-1}=\begin{bmatrix}
-1 & 4 & -2 \\
1 &-2 &1 \\
-2 & 3 & -1
\end{bmatrix},\] and hence we have
\begin{align*}
A=\begin{bmatrix}
1 & 0 & 1 \\
0 &2 &0 \\
1 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
-1 & 4 & -2 \\
1 &-2 &1 \\
-2 & 3 & -1
\end{bmatrix}
=\begin{bmatrix}
-3 & 7 & -3 \\
2 &-4 &2 \\
-2 & 6 & -3
\end{bmatrix}.
\end{align*}
Using the relation $T(\mathbf{x})=A\mathbf{x}$, the formula for $T(\mathbf{x})$ is obtained as follows.
\begin{align*}
T(\mathbf{x})&=A\mathbf{x}\\
&=\begin{bmatrix}
-3 & 7 & -3 \\
2 &-4 &2 \\
-2 & 6 & -3
\end{bmatrix}\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}\\[6 pt] &=\begin{bmatrix}
-3x+7y-3z \\
2x-4y+2z \\
-2x+6y-3z
\end{bmatrix}.
\end{align*}

Solution 2 using a linear combination and linearity.

The second method is to find the linear combination
\[\mathbf{x}=c_1\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}+c_2\begin{bmatrix}
2 \\
3 \\
5
\end{bmatrix}+c_3\begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix}\] and use the linearity of the linear transformation.
To find the coefficients $c_1, c_2, c_3$, we consider the augmented matrix
\[ \left[\begin{array}{rrr|r}
1 & 2 & 0 & x \\
1 &3 & 1 & y \\
1 & 5 & 2 & z
\end{array} \right]\] and we reduce this matrix by elementary row operations.
The reduction operations are exactly the same as in solution 1 and we obtain
\begin{align*}
c_1&=-x+4y-2z\\
c_2&=x-2y+z\\
c_3&=-2x+3y-z.
\end{align*}

Therefore, we have by the linearity of $T$
\begin{align*}
T(\mathbf{x})&=T\left(\,c_1\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}+c_2\begin{bmatrix}
2 \\
3 \\
5
\end{bmatrix}+c_3\begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \, \right)\\[6 pt] &=c_1T\left(\,\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}\, \right)+c_2T\left(\,\begin{bmatrix}
2 \\
3 \\
5
\end{bmatrix}\, \right)+c_3T\left(\,\begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \, \right)\\[6 pt] &=(-x+4y-2z)\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}+(x-2y+z)\begin{bmatrix}
0 \\
2 \\
-1
\end{bmatrix} +(-2x+3y-z)\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}\\[6 pt] &=\begin{bmatrix}
-3x+7y-3z \\
2x-4y+2z \\
-2x+6y-3z
\end{bmatrix}.
\end{align*}

Related Question.

A similar problem with a linear transformation from $\R^2$ to $\R^3$ is given in the post
Give a formula for a linear transformation from $\R^2$ to $\R^3$“.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

2 Responses

  1. 03/16/2017

    […] A similar problem for a linear transformation from $R^3$ to $R^3$ is given in the post “Determine linear transformation using matrix representation“. […]

  2. 08/01/2017

    […] Determine linear transformation using matrix representation […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Find the Formula for the Power of a Matrix Using Linear Recurrence Relation

Suppose that $A$ is $2\times 2$ matrix that has eigenvalues $-1$ and $3$. Then for each positive integer $n$ find...

Close