Diagonalize a 2 by 2 Symmetric Matrix

Diagonalization Problems and Solutions in Linear Algebra

Problem 629

Diagonalize the $2\times 2$ matrix $A=\begin{bmatrix}
2 & -1\\
-1& 2
\end{bmatrix}$ by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

 
LoadingAdd to solve later

Sponsored Links

Solution.

The characteristic polynomial $p(t)$ of the matrix $A$ is
\begin{align*}
p(t)&=\det(A-tI)=\begin{vmatrix}
2-t & -1\\
-1& 2-1
\end{vmatrix}\\[6pt] &=(2-t)^2-1 =t^2-4t+3\\
&=(t-1)(t-3).
\end{align*}
It follows that the eigenvalues of $A$ are $\lambda=1, 3$ with algebraic multiplicities are both $1$.
Hence, the geometric multiplicities are $1$ and thus any nonzero vector in eahc eigenspace forms a eigenbasis.


Now let us find a eigenbasis for each eigenspace $E_{\lambda}=\calN(A-\lambda I)$.
For the eigenvalue $1$, we have
\[A-I=\begin{bmatrix}
1 & -1\\
-1& 1
\end{bmatrix}\xrightarrow{R_2+R_1} \begin{bmatrix}
1 & -1\\
0& 0
\end{bmatrix}\] This yields that the eigenvectors corresponding to the eigenvalue $1$ are $x_2\begin{bmatrix}
1 \\
1
\end{bmatrix}$ with $x_2\neq 0$. Hence
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
1
\end{bmatrix} \in E_1\] is an eigenbasis for $E_1$.


Similarly, as we have
\[A-3I=\begin{bmatrix}
-1 & -1\\
-1& -1
\end{bmatrix} \xrightarrow{-R_1}\begin{bmatrix}
1 & 1\\
-1& -1
\end{bmatrix} \xrightarrow{R_2+R_1} \begin{bmatrix}
1 & 1\\
0& 0
\end{bmatrix},\] we see that
\[\mathbf{v}_2=\begin{bmatrix}
-1 \\
1
\end{bmatrix} \in E_3\] is an eigenbasis for $E_3$.


Let
\[S=\begin{bmatrix}
\mathbf{v}_1 & \mathbf{v}_2
\end{bmatrix}=
\begin{bmatrix}
1 & -1\\
1& 1
\end{bmatrix} \text{ and } D=\begin{bmatrix}
1 & 0\\
0& 3
\end{bmatrix}.\]

Then the diagonalization procedure yields that $S$ is nonsingular and $S^{-1}AS= D$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

1 Response

  1. 01/03/2018

    […] 1 end{bmatrix} text{ and } begin{bmatrix} -1 \ 1 end{bmatrix},] respectively. (See the post Diagonalize a 2 by 2 Symmetric Matrix for […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Transformation problems and solutions
Is the Following Function $T:\R^2 \to \R^3$ a Linear Transformation?

Determine whether the function $T:\R^2 \to \R^3$ defined by \[T\left(\, \begin{bmatrix} x \\ y \end{bmatrix} \,\right) = \begin{bmatrix} x_+y \\...

Close