Diagonalize the 3 by 3 Matrix if it is Diagonalizable

Diagonalization Problems and Solutions in Linear Algebra

Problem 456

Determine whether the matrix
\[A=\begin{bmatrix}
0 & 1 & 0 \\
-1 &0 &0 \\
0 & 0 & 2
\end{bmatrix}\] is diagonalizable.

If it is diagonalizable, then find the invertible matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

 
LoadingAdd to solve later

Sponsored Links

How to diagonalize matrices.

For a general procedure of the diagonalization of a matrix, please read the post “How to Diagonalize a Matrix. Step by Step Explanation“.

 

Solution.

We first determine the eigenvalues of the matrix $A$.
To do so, we compute the characteristic polynomial $p(t)$ of $A$.
We have
\begin{align*}
&p(t)=\det(A-tI)\\
&=\begin{vmatrix}
-t & 1 & 0 \\
-1 &-t &0 \\
0 & 0 & 2-t
\end{vmatrix}\\[6pt] &=(-1)^{3+3}(2-t)\begin{vmatrix}
-t & 1\\
-1& -t
\end{vmatrix} && \text{by the third row cofactor expansion}\\
&=(2-t)(t^2+1).
\end{align*}
Thus the eigenvalues of $A$ are $2, \pm i$.
Since the $3\times 3$ matrix $A$ has three distinct eigenvalues, it is diagonalizable.


To diagonalize $A$, we now find eigenvectors.
For the eigenvalue $2$, we compute
\begin{align*}
&A-2I=\begin{bmatrix}
-2 & 1 & 0 \\
-1 &-2 &0 \\
0 & 0 & 0
\end{bmatrix}
\xrightarrow{-R_2}
\begin{bmatrix}
-2 & 1 & 0 \\
1 &2 &0 \\
0 & 0 & 0
\end{bmatrix}\\[6pt] &\xrightarrow{R_1 \leftrightarrow R_2}\begin{bmatrix}
1 & 2 & 0 \\
-2 &1 &0 \\
0 & 0 & 0
\end{bmatrix}
\xrightarrow{R_2+2R_1}\begin{bmatrix}
1 & 2 & 0 \\
0 &5 &0 \\
0 & 0 & 0
\end{bmatrix}\\[6pt] &\xrightarrow{\frac{1}{5}R_2}\begin{bmatrix}
1 & 2 & 0 \\
0 &1 &0 \\
0 & 0 & 0
\end{bmatrix}
\xrightarrow{R_1-2R_2}
\begin{bmatrix}
1 & 0 & 0 \\
0 &1 &0 \\
0 & 0 & 0
\end{bmatrix}.
\end{align*}
Thus, the solutions $\mathbf{x}$ of $(A-2I)=\mathbf{0}$ satisfy $x=y=0$.
Hence the eigenspace is
\[E_2=\calN(A-2I)=\Span\left\{\, \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \,\right\}.\]


For the eigenvalue $i$, we compute
\begin{align*}
A-iI=\begin{bmatrix}
-i & 1 & 0 \\
-1 &-i &0 \\
0 & 0 & 2-i
\end{bmatrix}
\xrightarrow{iR_1}
\begin{bmatrix}
1 & i & 0 \\
-1 &-i &0 \\
0 & 0 & 2-i
\end{bmatrix}\\[6pt] \xrightarrow{\substack{R_2+R_1\\ \frac{1}{2-i}R_3}}
\begin{bmatrix}
1 & i & 0 \\
0 &0 &0 \\
0 & 0 & 1
\end{bmatrix}
\xrightarrow{R_2 \leftrightarrow R_3}
\begin{bmatrix}
1 & i & 0 \\
0 & 0 & 1\\
0 &0 &0
\end{bmatrix}.
\end{align*}
So the solutions $\mathbf{x}$ of $(A-iI)\mathbf{x}=\mathbf{0}$ satisfy
\[x=-iy \text{ and } z=0.\] Thus, the eigenspace is
\[E_i=\calN(A-iI)=\Span\left\{\, \begin{bmatrix}
1 \\
i \\
0
\end{bmatrix} \,\right\}.\]


Since $i$ and $-i$ are complex conjugate, their eigenspaces are also complex conjugate.
Hence the eigenspace for $-i$ is
\[E_{-i}=\Span\left\{\, \begin{bmatrix}
1 \\
-i \\
0
\end{bmatrix} \,\right\}.\]


From these computations, we have obtained eigenvalues $2, i, -i$ and eigenvector corresponding to these are
\[\mathbf{v}_{2}=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}, \mathbf{v}_i=\begin{bmatrix}
1 \\
i \\
0
\end{bmatrix}, \mathbf{v}_{-i}=\begin{bmatrix}
1 \\
-i \\
0
\end{bmatrix}.\]

Let
\[S=\begin{bmatrix}
\mathbf{v}_2 & \mathbf{v}_i & \mathbf{v}_{-i} \\
\end{bmatrix}=\begin{bmatrix}
0 & 1 & 1 \\
0 &i &-i \\
1 & 0 & 0
\end{bmatrix}\] and
\[D=\begin{bmatrix}
2 & 0 & 0 \\
0 &i &0 \\
0 & 0 & -i
\end{bmatrix}.\] Then $S$ is invertible and we have $S^{-1}AS=D$ by the diagonalization process.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Find Eigenvalues, Eigenvectors, and Diagonalize the 2 by 2 MatrixFind Eigenvalues, Eigenvectors, and Diagonalize the 2 by 2 Matrix Consider the matrix $A=\begin{bmatrix} a & -b\\ b& a \end{bmatrix}$, where $a$ and $b$ are real numbers and $b\neq 0$. (a) Find all eigenvalues of $A$. (b) For each eigenvalue of $A$, determine the eigenspace $E_{\lambda}$. (c) Diagonalize the matrix $A$ by finding a […]
  • Diagonalize a 2 by 2 Symmetric MatrixDiagonalize a 2 by 2 Symmetric Matrix Diagonalize the $2\times 2$ matrix $A=\begin{bmatrix} 2 & -1\\ -1& 2 \end{bmatrix}$ by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.   Solution. The characteristic polynomial $p(t)$ of the matrix $A$ […]
  • How to Diagonalize a Matrix. Step by Step Explanation.How to Diagonalize a Matrix. Step by Step Explanation. In this post, we explain how to diagonalize a matrix if it is diagonalizable. As an example, we solve the following problem. Diagonalize the matrix \[A=\begin{bmatrix} 4 & -3 & -3 \\ 3 &-2 &-3 \\ -1 & 1 & 2 \end{bmatrix}\] by finding a nonsingular […]
  • A Diagonalizable Matrix which is Not Diagonalized by a Real Nonsingular MatrixA Diagonalizable Matrix which is Not Diagonalized by a Real Nonsingular Matrix Prove that the matrix \[A=\begin{bmatrix} 0 & 1\\ -1& 0 \end{bmatrix}\] is diagonalizable. Prove, however, that $A$ cannot be diagonalized by a real nonsingular matrix. That is, there is no real nonsingular matrix $S$ such that $S^{-1}AS$ is a diagonal […]
  • Diagonalize the $2\times 2$ Hermitian Matrix by a Unitary MatrixDiagonalize the $2\times 2$ Hermitian Matrix by a Unitary Matrix Consider the Hermitian matrix \[A=\begin{bmatrix} 1 & i\\ -i& 1 \end{bmatrix}.\] (a) Find the eigenvalues of $A$. (b) For each eigenvalue of $A$, find the eigenvectors. (c) Diagonalize the Hermitian matrix $A$ by a unitary matrix. Namely, find a diagonal matrix […]
  • Diagonalize the Complex Symmetric 3 by 3 Matrix with $\sin x$ and $\cos x$Diagonalize the Complex Symmetric 3 by 3 Matrix with $\sin x$ and $\cos x$ Consider the complex matrix \[A=\begin{bmatrix} \sqrt{2}\cos x & i \sin x & 0 \\ i \sin x &0 &-i \sin x \\ 0 & -i \sin x & -\sqrt{2} \cos x \end{bmatrix},\] where $x$ is a real number between $0$ and $2\pi$. Determine for which values of $x$ the […]
  • Quiz 13 (Part 1) Diagonalize a MatrixQuiz 13 (Part 1) Diagonalize a Matrix Let \[A=\begin{bmatrix} 2 & -1 & -1 \\ -1 &2 &-1 \\ -1 & -1 & 2 \end{bmatrix}.\] Determine whether the matrix $A$ is diagonalizable. If it is diagonalizable, then diagonalize $A$. That is, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that […]
  • If Two Matrices Have the Same Eigenvalues with Linearly Independent Eigenvectors, then They Are EqualIf Two Matrices Have the Same Eigenvalues with Linearly Independent Eigenvectors, then They Are Equal Let $A$ and $B$ be $n\times n$ matrices. Suppose that $A$ and $B$ have the same eigenvalues $\lambda_1, \dots, \lambda_n$ with the same corresponding eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$. Prove that if the eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly […]

You may also like...

1 Response

  1. 06/14/2017

    […] For a solution, check out the post “Diagonalize the 3 by 3 Matrix if it is Diagonalizable“. […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Transformation problems and solutions
All Linear Transformations that Take the Line $y=x$ to the Line $y=-x$

Determine all linear transformations of the $2$-dimensional $x$-$y$ plane $\R^2$ that take the line $y=x$ to the line $y=-x$.  

Close