# Diagonalization-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Any Vector is a Linear Combination of Basis Vectors Uniquely Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space $V$ over a scalar field $K$. Then show that any vector $\mathbf{v}\in V$ can be written uniquely as \[\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3,\] where $c_1, c_2, c_3$ are […]
- How to Obtain Information of a Vector if Information of Other Vectors are Given Let $A$ be a $3\times 3$ matrix and let \[\mathbf{v}=\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \text{ and } \mathbf{w}=\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}.\] Suppose that $A\mathbf{v}=-\mathbf{v}$ and $A\mathbf{w}=2\mathbf{w}$. Then find […]
- A Group Homomorphism that Factors though Another Group Let $G, H, K$ be groups. Let $f:G\to K$ be a group homomorphism and let $\pi:G\to H$ be a surjective group homomorphism such that the kernel of $\pi$ is included in the kernel of $f$: $\ker(\pi) \subset \ker(f)$. Define a map $\bar{f}:H\to K$ as follows. For each […]
- Mathematics About the Number 2018 Happy New Year 2018!! Here are several mathematical facts about the number 2018. Is 2018 a Prime Number? The number 2018 is an even number, so in particular 2018 is not a prime number. The prime factorization of 2018 is \[2018=2\cdot 1009.\] Here $2$ and $1009$ are […]
- Idempotent Linear Transformation and Direct Sum of Image and Kernel Let $A$ be the matrix for a linear transformation $T:\R^n \to \R^n$ with respect to the standard basis of $\R^n$. We assume that $A$ is idempotent, that is, $A^2=A$. Then prove that \[\R^n=\im(T) \oplus \ker(T).\] Proof. To prove the equality $\R^n=\im(T) […]
- The Inverse Image of an Ideal by a Ring Homomorphism is an Ideal Let $f:R\to R'$ be a ring homomorphism. Let $I'$ be an ideal of $R'$ and let $I=f^{-1}(I)$ be the preimage of $I$ by $f$. Prove that $I$ is an ideal of the ring $R$. Proof. To prove $I=f^{-1}(I')$ is an ideal of $R$, we need to check the following two […]
- Every Ring of Order $p^2$ is Commutative Let $R$ be a ring with unit $1$. Suppose that the order of $R$ is $|R|=p^2$ for some prime number $p$. Then prove that $R$ is a commutative ring. Proof. Let us consider the subset \[Z:=\{z\in R \mid zr=rz \text{ for any } r\in R\}.\] (This is called the […]
- Order of Product of Two Elements in a Group Let $G$ be a group. Let $a$ and $b$ be elements of $G$. If the order of $a, b$ are $m, n$ respectively, then is it true that the order of the product $ab$ divides $mn$? If so give a proof. If not, give a counterexample. Proof. We claim that it is not true. As a […]