Diagonalize the Upper Triangular Matrix and Find the Power of the Matrix

Diagonalization Problems and Solutions in Linear Algebra

Problem 583

Consider the $2\times 2$ complex matrix
\[A=\begin{bmatrix}
a & b-a\\
0& b
\end{bmatrix}.\]

(a) Find the eigenvalues of $A$.

(b) For each eigenvalue of $A$, determine the eigenvectors.

(c) Diagonalize the matrix $A$.

(d) Using the result of the diagonalization, compute and simplify $A^k$ for each positive integer $k$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) Find the eigenvalues of $A$.

Since $A$ is an upper triangular matrix, eigenvalues are diagonal entries.
Hence $a, b$ are eigenvalues of $A$.

(b) For each eigenvalue of $A$, determine the eigenvectors.

Suppose now that $a\neq b$.
Let us find eigenvectors corresponding to the eigenvalue $a$.
We have
\begin{align*}
A-aI=\begin{bmatrix}
0 & b-a\\
0& b-a
\end{bmatrix}
\xrightarrow{R_2-R_1}
\begin{bmatrix}
0 & b-a\\
0& 0
\end{bmatrix}
\xrightarrow{\frac{1}{b-a}R_1}
\begin{bmatrix}
0 & 1\\
0& 0
\end{bmatrix}.
\end{align*}
It follows that the eigenvectors corresponding to $a$ are
\[x_1\begin{bmatrix}
1 \\
0
\end{bmatrix},\] where $x_1$ is any nonzero complex number.


Next, we find the eigenvectors corresponding to the eigenvalue $b$.
We have
\begin{align*}
A-bI=\begin{bmatrix}
a-b & b-a\\
0& 0
\end{bmatrix}
\xrightarrow{\frac{1}{a-b}R_1}
\begin{bmatrix}
1 & -1\\
0& 0
\end{bmatrix}.
\end{align*}
Hence the eigenvectors corresponding to $b$ are
\[x_1\begin{bmatrix}
1 \\
1
\end{bmatrix},\] where $x_1$ is any nonzero complex number.

(c) Diagonalize the matrix $A$.

When $a=b$, then $A$ is already diagonal matrix. So let us consider the case $a\neq b$.
In the previous parts, we obtained the eigenvalues $a, b$, and corresponding eigenvectors
\[\begin{bmatrix}
1 \\
0
\end{bmatrix} \text{ and } \begin{bmatrix}
1 \\
1
\end{bmatrix}.\] Let $S=\begin{bmatrix}
1 & 1\\
0& 1
\end{bmatrix}$ be a matrix whose column vectors are the eigenvectors.
Then $S$ is invertible and we have
\[S^{-1}AS=\begin{bmatrix}
a & 0\\
0& b
\end{bmatrix}\] by the diagonalization process.

Remark that this formula is also true even when $a=b$.

(d) Using the result of the diagonalization, compute and simplify $A^k$ for each positive integer $k$.

Using the result of the diagonalization in part (c), we have
\[A=S\begin{bmatrix}
a & 0\\
0& b
\end{bmatrix}S^{-1}.\] For each positive integer $k$, we have
\begin{align*}
A^k&=\left(\, S\begin{bmatrix}
a & 0\\
0& b
\end{bmatrix}S^{-1} \,\right)^k\\[6pt] &=S\begin{bmatrix}
a & 0\\
0& b
\end{bmatrix}^k S^{-1}=S\begin{bmatrix}
a^k & 0\\
0& b^k
\end{bmatrix}S^{-1}\\[6pt] &=\begin{bmatrix}
1 & 1\\
0& 1
\end{bmatrix}
\begin{bmatrix}
a^k & 0\\
0& b^k
\end{bmatrix}
\begin{bmatrix}
1 & -1\\
0& 1
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
a^k & b^k-a^k\\
0& b^k
\end{bmatrix}.
\end{align*}

In summary, we have the formula
\[A^k=\begin{bmatrix}
a^k & b^k-a^k\\
0& b^k
\end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

1 Response

  1. 10/11/2017

    […] The solution is given in the post↴ Diagonalize the Upper Triangular Matrix and Find the Power of the Matrix […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
Is the Sum of a Nilpotent Matrix and an Invertible Matrix Invertible?

A square matrix $A$ is called nilpotent if some power of $A$ is the zero matrix. Namely, $A$ is nilpotent...

Close