Does an Extra Vector Change the Span? Problem 706

Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^5$. If $\mathbf{v}_4$ is another vector in $V$, then is the set
$S_2=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ still a spanning set for $V$? If so, prove it. Otherwise, give a counterexample. Add to solve later

Proof.

We prove that $S_2$ is also a spanning set for $V$, that is, we prove that
$\Span(S_2)=V.$

Prove $\Span(S_2) \subset V$

We first show that $\Span(S_2)$ is contained in $V$. Let $\mathbf{x}$ be an element in $\Span(S_2)$. Then there exist scalars $c_1, c_2, c_3, c_4$ such that
$\mathbf{x}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3 \mathbf{v}_3 + c_4 \mathbf{v}_4.$ Since $\Span(S_1)=V$, we know that $c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3 \mathbf{v}_3$ is a vector in $V$. As $\mathbf{v}_4\in V$, we have $c_4\mathbf{v}_4 \in V$.
Since $V$ is a vector space, the sum of two elements in $V$ is in $V$.
So, $\mathbf{x}=(c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3 \mathbf{v}_3) + (c_4 \mathbf{v}_4) \in V.$ This proves that $\Span(S_2) \subset V$.

Prove $\Span(S_2) \supset V$

Note that since $S_1$ is a spanning set for $V$, every element of $S_1$ can be written as a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2$, and $\mathbf{v}_3$.
That is, for any $\mathbf{v}\in V$, there exist scalars $c_1, c_2, c_3$ such that
$\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3.$ Observe that this can be written as follows.
$\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3+0\mathbf{v}_4.$ This tells us that $\mathbf{v}$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, and $\mathbf{v}_4$.
Hence, any vector in $V$ can be written as a linear combination of the vectors in $S_2$.
Thus, $V\subset \Span(S_2)$.

Putting these inclusion together yields that $V=\Span(S_2)$, and hence $S_2$ is a spanning set for $V$. Add to solve later

More from my site

You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra Vector Space of Functions from a Set to a Vector Space

For a set $S$ and a vector space $V$ over a scalar field $\K$, define the set of all functions...

Close