Dot Product, Lengths, and Distances of Complex Vectors

Linear Algebra Problems and Solutions

Problem 689

For this problem, use the complex vectors
\[ \mathbf{w}_1 = \begin{bmatrix} 1 + i \\ 1 – i \\ 0 \end{bmatrix} , \, \mathbf{w}_2 = \begin{bmatrix} -i \\ 0 \\ 2 – i \end{bmatrix} , \, \mathbf{w}_3 = \begin{bmatrix} 2+i \\ 1 – 3i \\ 2i \end{bmatrix} . \]

Suppose $\mathbf{w}_4$ is another complex vector which is orthogonal to both $\mathbf{w}_2$ and $\mathbf{w}_3$, and satisfies $\mathbf{w}_1 \cdot \mathbf{w}_4 = 2i$ and $\| \mathbf{w}_4 \| = 3$.

Calculate the following expressions:

(a) $ \mathbf{w}_1 \cdot \mathbf{w}_2 $.

(b) $ \mathbf{w}_1 \cdot \mathbf{w}_3 $.

(c) $((2+i)\mathbf{w}_1 – (1+i)\mathbf{w}_2 ) \cdot \mathbf{w}_4$.

(d) $\| \mathbf{w}_1 \| , \| \mathbf{w}_2 \|$, and $\| \mathbf{w}_3 \|$.

(e) $\| 3 \mathbf{w}_4 \|$.

(f) What is the distance between $\mathbf{w}_2$ and $\mathbf{w}_3$?

 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) $ \mathbf{w}_1 \cdot \mathbf{w}_2 $.

\[ \mathbf{w}_1 \cdot \mathbf{w}_2 = \begin{bmatrix} 1+i & 1-i & 0 \end{bmatrix} \begin{bmatrix} -i \\ 0 \\ 2-i \end{bmatrix} = (1+i)(-i) + 0 + 0 = 1 – i . \]

(b) $ \mathbf{w}_1 \cdot \mathbf{w}_3 $.

\begin{align*} \mathbf{w}_1 \cdot \mathbf{w}_3 &= \begin{bmatrix} 1+i & 1-i & 0 \end{bmatrix} \begin{bmatrix} 2+i \\ 1-3i \\ 2i \end{bmatrix} \\ &= (1+i)(2+i) + (1-i)(1-3i) + 0 \\ &= (1 + 3i) + (-2 – 4i) \\ &= -1 – i . \end{align*}

(c) $((2+i)\mathbf{w}_1 – (1+i)\mathbf{w}_2 ) \cdot \mathbf{w}_4$.

\begin{align*} ((2+i)\mathbf{w}_1 – (1+i)\mathbf{w}_2 ) \cdot \mathbf{w}_4 &= (2+i)( \mathbf{w}_1 \cdot \mathbf{w}_4) – (1+i) ( \mathbf{w}_2 \cdot \mathbf{w}_4 ) \\
&= (2+i) ( 2i ) – (1+i)(0) \\
&= -2 + 4i \end{align*}

Note that $\mathbf{w}_2 \cdot \mathbf{w}_4=0$ because these vectors are orthogonal.

(d) $\| \mathbf{w}_1 \| , \| \mathbf{w}_2 \|$, and $\| \mathbf{w}_3 \|$.

For an arbitrary complex vector $\mathbf{v}$, its length is defined to be
\[ \| \mathbf{v} \| = \sqrt{ \overline{\mathbf{v}}^\trans \mathbf{v} } . \]

Thus,
\[ \| \mathbf{w}_1 \| \, = \, \sqrt{ (1-i)(1+i) + (1+i)(1-i) + 0 } = \sqrt{ 2 + 2} = \sqrt{4} , \] \[ \| \mathbf{w}_2 \| \, = \, \sqrt{ (i)(-i) + 0 + (2+i)(2-i) } = \sqrt{1 + 5} = \sqrt{6} , \] \[ \| \mathbf{w}_3 \| \, = \, \sqrt{ (2-i)(2+i) + (1+3i)(1-3i) + (-2i)(2i) } = \sqrt{ 5 + 10 + 4} = \sqrt{19} . \]

(e) $\| 3 \mathbf{w}_4 \|$.

$ \| 3 \mathbf{w}_4 \| = 3 \| \mathbf{w}_4 \| = 3\cdot 3=9 $ .

(f) What is the distance between $\mathbf{w}_2$ and $\mathbf{w}_3$?

The distance between these vectors is given by $\| \mathbf{w}_2 – \mathbf{w}_3 \|$. First we calculate this difference:
\[ \mathbf{w}_2 – \mathbf{w}_3 \, = \, \begin{bmatrix} -i \\ 0 \\ 2 – i \end{bmatrix} – \begin{bmatrix} 2+i \\ 1 – 3i \\ 2i \end{bmatrix} \, = \, \begin{bmatrix} -2 – 2i \\ -1 + 3i \\ 2 – 3i \end{bmatrix} . \]

Now the length of the complex vector is defined to be
\begin{align*}
\| \mathbf{w}_2 – \mathbf{w}_3 \| &= \sqrt{ \left( \overline{ \mathbf{w}_2 – \mathbf{w}_3 } \right)^{\trans} \left( \mathbf{w}_2 – \mathbf{w}_3 \right) } \\[6pt] &= \sqrt{ \begin{bmatrix} -2 + 2i & -1 – 3i & 2 + 3i \end{bmatrix} \begin{bmatrix} -2 – 2i \\ -1 + 3i \\ 2 – 3i \end{bmatrix} } \\[6pt] &= \sqrt{ (-2+2i)(-2-2i) + (-1-3i)(-1+3i) + (2+3i)(2-3i) } \\[6pt] &= \sqrt{ 8 + 10 + 13 } \\[6pt] &= \sqrt{ 31} \end{align*}


LoadingAdd to solve later

Sponsored Links

More from my site

  • Inner Products, Lengths, and Distances of 3-Dimensional Real VectorsInner Products, Lengths, and Distances of 3-Dimensional Real Vectors For this problem, use the real vectors \[ \mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} , \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} , \mathbf{v}_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} . \] Suppose that $\mathbf{v}_4$ is another vector which is […]
  • Find the Distance Between Two Vectors if the Lengths and the Dot Product are GivenFind the Distance Between Two Vectors if the Lengths and the Dot Product are Given Let $\mathbf{a}$ and $\mathbf{b}$ be vectors in $\R^n$ such that their length are \[\|\mathbf{a}\|=\|\mathbf{b}\|=1\] and the inner product \[\mathbf{a}\cdot \mathbf{b}=\mathbf{a}^{\trans}\mathbf{b}=-\frac{1}{2}.\] Then determine the length $\|\mathbf{a}-\mathbf{b}\|$. (Note […]
  • Eigenvalues and Eigenvectors of The Cross Product Linear TransformationEigenvalues and Eigenvectors of The Cross Product Linear Transformation We fix a nonzero vector $\mathbf{a}$ in $\R^3$ and define a map $T:\R^3\to \R^3$ by \[T(\mathbf{v})=\mathbf{a}\times \mathbf{v}\] for all $\mathbf{v}\in \R^3$. Here the right-hand side is the cross product of $\mathbf{a}$ and $\mathbf{v}$. (a) Prove that $T:\R^3\to \R^3$ is […]
  • Unit Vectors and Idempotent MatricesUnit Vectors and Idempotent Matrices A square matrix $A$ is called idempotent if $A^2=A$. (a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$. Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$. Prove that $P$ is an idempotent matrix. (b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be […]
  • Find the Inverse Matrix of a Matrix With FractionsFind the Inverse Matrix of a Matrix With Fractions Find the inverse matrix of the matrix \[A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.\]   Hint. You may use the augmented matrix […]
  • Inner Product, Norm, and Orthogonal VectorsInner Product, Norm, and Orthogonal Vectors Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in […]
  • Equivalent Conditions to be a Unitary MatrixEquivalent Conditions to be a Unitary Matrix A complex matrix is called unitary if $\overline{A}^{\trans} A=I$. The inner product $(\mathbf{x}, \mathbf{y})$ of complex vector $\mathbf{x}$, $\mathbf{y}$ is defined by $(\mathbf{x}, \mathbf{y}):=\overline{\mathbf{x}}^{\trans} \mathbf{y}$. The length of a complex vector […]
  • Orthonormal Basis of Null Space and Row SpaceOrthonormal Basis of Null Space and Row Space Let $A=\begin{bmatrix} 1 & 0 & 1 \\ 0 &1 &0 \end{bmatrix}$. (a) Find an orthonormal basis of the null space of $A$. (b) Find the rank of $A$. (c) Find an orthonormal basis of the row space of $A$. (The Ohio State University, Linear Algebra Exam […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
linear combination problems and solutions in linear algebra
How to Obtain Information of a Vector if Information of Other Vectors are Given

Let $A$ be a $3\times 3$ matrix and let \[\mathbf{v}=\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \text{ and } \mathbf{w}=\begin{bmatrix}...

Close